...
首页> 外文期刊>mSystems >Intermittent Hypoxia and Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model Systems
【24h】

Intermittent Hypoxia and Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model Systems

机译:间歇性缺氧和高碳酸血症可重复地改变整个啮齿动物模型系统的肠道微生物组和代谢组。

获取原文
           

摘要

Studying perturbations in the gut ecosystem using animal models of disease continues to provide valuable insights into the role of the microbiome in various pathological conditions. However, understanding whether these changes are consistent across animal models of different genetic backgrounds, and hence potentially translatable to human populations, remains a major unmet challenge in the field. Nonetheless, in relatively limited cases have the same interventions been studied in two animal models in the same laboratory. Moreover, such studies typically examine a single data layer and time point. Here, we show the power of utilizing time series microbiome (16S rRNA amplicon profiling) and metabolome (untargeted liquid chromatography-tandem mass spectrometry [LC-MS/MS]) data to relate two different mouse models of atherosclerosis—ApoEsup?/?/sup ( n =?24) and Ldlrsup?/?/sup ( n =?16)—that are exposed to intermittent hypoxia and hypercapnia (IHH) longitudinally (for 10 and 6?weeks, respectively) to model chronic obstructive sleep apnea. Using random forest classifiers trained on each data layer, we show excellent accuracy in predicting IHH exposure within ApoEsup?/?/sup and Ldlrsup?/?/sup knockout models and in cross-applying predictive features found in one animal model to the other. The key microbes and metabolites that reproducibly predicted IHH exposure included bacterial species from the families Mogibacteriaceae , Clostridiaceae , bile acids, and fatty acids, providing a refined set of biomarkers associated with IHH. The results highlight that time series multiomics data can be used to relate different animal models of disease using supervised machine learning techniques and can provide a pathway toward identifying robust microbiome and metabolome features that underpin translation from animal models to human disease. IMPORTANCE Reproducibility of microbiome research is a major topic of contemporary interest. Although it is often possible to distinguish individuals with specific diseases within a study, the differences are often inconsistent across cohorts, often due to systematic variation in analytical conditions. Here we study the same intervention in two different mouse models of cardiovascular disease (atherosclerosis) by profiling the microbiome and metabolome in stool specimens over time. We demonstrate that shared microbial and metabolic changes are involved in both models with the intervention. We then introduce a pipeline for finding similar results in other studies. This work will help find common features identified across different model systems that are most likely to apply in humans.
机译:使用疾病的动物模型研究肠道生态系统中的扰动,继续为微生物组在各种病理条件下的作用提供有价值的见解。然而,了解这些变化是否在不同遗传背景的动物模型之间是一致的,并因此有可能转化为人类种群,仍然是该领域尚未解决的主要挑战。但是,在相对有限的情况下,在同一实验室的两种动物模型中研究了相同的干预措施。此外,此类研究通常检查单个数据层和时间点。在这里,我们展示了利用时间序列微生物组(16S rRNA扩增子谱)和代谢组(非靶向液相色谱-串联质谱[LC-MS / MS])数据关联两种不同的动脉粥样硬化小鼠模型-ApoE 的能力。 /?(n =?24)和Ldlr ?/?(n =?16)-纵向暴露于间歇性缺氧和高碳酸血症(IHH)(持续10和6周) )分别模拟慢性阻塞性睡眠呼吸暂停。使用在每个数据层上经过训练的随机森林分类器,我们在预测ApoE ?/?和Ldlr ?/?剔除模型以及交叉应用的预测模型中的IHH暴露方面显示出卓越的准确性在一种动物模型中发现的特征在另一种动物模型中发现。可重现地预测IHH暴露的关键微生物和代谢物包括来自Mogibacteriaceae科,梭菌科,胆汁酸和脂肪酸家族的细菌,提供了与IHH相关的一组精致的生物标记。结果表明,时间序列多组学数据可用于使用监督的机器学习技术将不同的动物疾病模型关联起来,并可为确定从动物模型向人类疾病转化的强大微生物组和代谢组学特征提供途径。重要性微生物组研究的可重复性是当代关注的一个主要主题。尽管通常可以在研究中区分具有特定疾病的个体,但由于分析条件的系统变化,不同人群之间的差异通常是不一致的。在这里,我们通过分析随时间变化的粪便标本中的微生物组和代谢组,对两种不同的心血管疾病(动脉粥样硬化)小鼠模型进行了相同的干预研究。我们证明在干预的两个模型中都涉及到共享的微生物和代谢变化。然后,我们介绍了在其他研究中寻找相似结果的渠道。这项工作将有助于找到跨模型系统识别出的最有可能在人类中使用的共同特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号