首页> 外文期刊>mSphere >Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
【24h】

Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites

机译:通过化学稳定的进口蛋白质破坏质生生物的发生,避免了疟疾寄生虫的延迟死亡表型。

获取原文
           

摘要

Malaria parasites ( Plasmodium spp.) contain a nonphotosynthetic plastid organelle called the apicoplast, which houses essential metabolic pathways and is required throughout the parasite life cycle. The biogenesis pathways responsible for apicoplast growth, division, and inheritance are of key interest as potential drug targets. Unfortunately, several known apicoplast biogenesis inhibitors are of limited clinical utility because they cause a peculiar “delayed-death” phenotype in which parasites do not stop replicating until the second lytic cycle posttreatment. Identifying apicoplast biogenesis pathways that avoid the delayed-death phenomenon is a priority. Here, we generated parasites targeting a murine dihydrofolate reductase (mDHFR) domain, which can be conditionally stabilized with the compound WR99210, to the apicoplast. Surprisingly, chemical stabilization of this exogenous fusion protein disrupted parasite growth in an apicoplast-specific manner after a single lytic cycle. WR99210-treated parasites exhibited an apicoplast biogenesis defect beginning within the same lytic cycle as drug treatment, indicating that stabilized mDHFR perturbs a non-delayed-death biogenesis pathway. While the precise mechanism-of-action of the stabilized fusion is still unclear, we hypothesize that it inhibits apicoplast protein import by stalling within and blocking translocons in the apicoplast membranes. IMPORTANCE Malaria is a major cause of global childhood mortality. To sustain progress in disease control made in the last decade, new antimalarial therapies are needed to combat emerging drug resistance. Malaria parasites contain a relict chloroplast called the apicoplast, which harbors new targets for drug discovery. Unfortunately, some drugs targeting apicoplast pathways exhibit a delayed-death phenotype, which results in a slow onset-of-action that precludes their use as fast-acting, frontline therapies. Identification of druggable apicoplast biogenesis factors that will avoid the delayed-death phenotype is an important priority. Here, we find that chemical stabilization of an apicoplast-targeted mDHFR domain disrupts apicoplast biogenesis and inhibits parasite growth after a single lytic cycle, suggesting a non-delayed-death target. Our finding indicates that further interrogation of the mechanism-of-action of this exogenous fusion protein may reveal novel therapeutic avenues.
机译:疟原虫(Plasmodium spp。)含有一种非光合质体细胞器,称为apicoplast,它具有重要的代谢途径,是整个寄生虫生命周期所必需的。作为潜在的药物靶标,负责apicoplast生长,分裂和遗传的生物发生途径是最重要的。不幸的是,几种已知的apicoplast生物发生抑制剂在临床上用途有限,因为它们会引起一种特殊的“延迟死亡”表型,其中寄生虫直到第二个裂解周期后处理才停止复制。确定避免延迟死亡现象的apicoplast生物发生途径是当务之急。在这里,我们生成了靶向鼠二氢叶酸还原酶(mDHFR)结构域的寄生虫,该寄生虫可以用化合物WR99210有条件地稳定化到粘膜。出人意料的是,这种外源融合蛋白的化学稳定作用在单次裂解循环后就以一种非原生质体的方式破坏了寄生虫的生长。 WR99210处理的寄生虫在与药物治疗相同的裂解周期内开始出现了无顶质生物发生缺陷,这表明稳定的mDHFR干扰了非延迟死亡生物发生途径。虽然尚不清楚稳定融合的确切作用机制,但我们假设它通过在apicoplast膜内停滞并阻断translocons来抑制apicoplast蛋白的导入。重要信息疟疾是造成全球儿童死亡率的主要原因。为了维持过去十年来在疾病控制方面的进步,需要新的抗疟疾疗法来对抗正在出现的耐药性。疟原虫含有一种叫做叶绿体的残留叶绿体,它具有新的药物发现靶标。不幸的是,一些靶向apicoplast途径的药物表现出延迟死亡表型,这导致起效缓慢,从而使其无法用作速效一线治疗药物。鉴定可避免延迟死亡表型的可药用的apioplast生物发生因子是重要的优先事项。在这里,我们发现,以单一的裂解周期为目标的无纺锤体靶向的mDHFR域的化学稳定作用会破坏无纺锤体的生物发生并抑制寄生虫的生长,这表明了无延迟死亡的靶标。我们的发现表明,对该外源融合蛋白的作用机理的进一步研究可能揭示了新的治疗途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号