首页> 外文期刊>Molecular biology of the cell >Intraflagellar transport—the “new motility” 20 years later
【24h】

Intraflagellar transport—the “new motility” 20 years later

机译:鞭毛内运输— 20年后的“新动力”

获取原文
           

摘要

Intraflagellar transport is the rapid, bidirectional movement of protein complexes along the length of most eukaryotic cilia and flagella. Discovery of this intracellular process in Chlamydomonas reinhardtii 20 years ago led to a rapid discovery of cellular mechanisms that underlie a large number of human ciliopathies. Described herein are the events that led to this discovery. As a graduate student, I thought how strange it must be to look at your own research 20 years later. In my hands was a review titled “Two Decades since the Naming of Tubulin” ( Mohri and Hosoya, 1988 ). I certainly did not imagine at the time that I would ever make a similar retrospective. Yet, here I am, reflecting upon my discovery of intraflagellar transport (IFT) 20 years ago ( Kozminski et al. , 1993b ), in January 1992, when I was a doctoral student with Joel Rosenbaum in Yale's Department of Biology. The Mohri and Hosoya review interested me because my dissertation research initially focused on the functional significance of a tubulin posttranslational modification, acetylation. Studying the biflagellate, unicellular, green alga Chlamydomonas reinhardtii , I asked whether alterations in the amount of acetylated α-tubulin affected the stability or function of the flagellar axoneme, the microtubule core of the flagellum. I found no mutant phenotype, making for a quick but publishable end to my nascent project ( Kozminski et al. , 1993a ). As I learned, a quick end can be a good thing. The swan song of my tubulin project, and the first step toward the discovery of IFT, was the December 1991 American Society for Cell Biology meeting in Boston. The night before the meeting, my dissertation advisor Joel Rosenbaum aptly deemed the micrographs on my poster substandard. What ensued, learning that it is never too early to start a poster, was an all-nighter with my coauthor Dennis Diener, reprinting micrographs from photo negatives. With the sun rising, I had just enough time to catch an early morning train to Boston. As the Amtrak train swayed out of New Haven station I heard the voice barking, “Kozminski, Wake up!” It was no dream. Rosenbaum was in the aisle, talking about tubulin acetylation and my need for dissertation plan B. In serious outside voice, he said, “You need to look at Bloodgood's Balls.” I concurred. Heads turned. There was certainly no better conversation on which to eavesdrop that morning. Chlamydomonas flagella are an outstanding model for substrate–cell surface interactions. This became clear in 1977, when Robert Bloodgood, then a postdoc in the Rosenbaum lab, discovered a novel flagellar motility that is independent of flagellar beating. He found that polystyrene balls attached to the surface of a flagellum move in a rapid, bidirectional, saltatory manner ( Bloodgood, 1977 ). This ball movement is thought to be a manifestation of whole-cell gliding motility, which occurs when Chlamydomonas cells move along a substrate via their flagella, in a manner completely independent of flagellar beating. To this day, the mechanism of whole-cell gliding is not fully known and remains a very ripe area for research in cell signaling at cell surface–substrate interfaces. My question that morning on Amtrak was, “What are we looking for?” Rosenbaum wanted me to find the mechanism driving ball movement on the flagellar surface by using a permeabilized cell model. He made the pitch, telling me about earlier studies on dynein reactivation. I countered, saying we should look for kinesins within the flagellum, because ball movement is bidirectional and dyneins, which seemed well studied at the time, may only be applicable to motility in one direction. I recall that my favoritism of kinesin over dynein was only because kinesin was a relatively new discovery and hence “cool.” Rosenbaum liked my kinesin idea and launched into a 60-mile explanation of how cilia/flagella are the same as neurons; that is, if kinesin was found in axoplasm, it will be found in a flagellum. Sixty miles on Amtrak is a long time. That was it—after the winter holidays, I was to search for the flagellar kinesins driving ball movement on the flagellar surface by using a permeabilized cell model. The new year brought a new discussion. On returning from the holidays, Rosenbaum and Mark Mooseker, also on my dissertation committee, pushed me hard to work on radial spoke assembly. Spokes are the protein complexes that extend from the central pair of microtubules of the axoneme toward the outer doublet microtubules. In Petrine style, I refused three times. I said, “Spokes are boring ,” relative to molecular motors. In the end, I prevailed, and Rosenbaum permitted me to explore, at least for a short time, flagellar surface motility, as we had discussed on the train to Boston. I was extremely fortunate to have an advisor who allowed explorative forays. It made science extra fun. And, so the record is clear, Rosenbaum was not wrong in his push for radial spoke research. Spok
机译:鞭毛内运输是蛋白质复合物沿着大多数真核纤毛和鞭毛的长度的快速双向运动。 20年前在莱茵衣藻中发现这种细胞内过程导致迅速发现了许多人类纤毛病基础的细胞机制。本文描述了导致这一发现的事件。作为一名研究生,我认为20年后看自己的研究一定是多么奇怪。在我手中,有一篇标题为“自图布林命名以来的两个十年”的评论(Mohri和Hosoya,1988年)。我当时当然没有想到我会进行类似的回顾。然而,在这里,我反思了20年前我发现鞭毛内运输(IFT)的过程(Kozminski等,1993b),1992年1月,当时我是耶鲁大学生物学系的Joel Rosenbaum的博士生。 Mohri和Hosoya的评论使我感兴趣,因为我的论文研究最初集中在微管蛋白翻译后修饰,乙酰化的功能意义上。在研究双鞭毛,单细胞,绿藻衣藻时,我问乙酰化α-微管蛋白量的变化是否会影响鞭毛轴突(鞭毛微管核心)的稳定性或功能。我没有发现突变表型,这为我的新生项目提供了快速但可发布的终结(Kozminski等,1993a)。据我了解,快速结束可能是一件好事。我微管蛋白项目的天鹅之歌,也是迈向IFT的第一步,是1991年12月在波士顿召开的美国细胞生物学学会会议。会议的前一天晚上,我的论文顾问乔尔·罗森鲍姆(Joel Rosenbaum)恰当地认为海报上的显微照片不合标准。随后得知要开始制作海报永远还为时过早,这是我和我的合著者丹尼斯·迪纳(Dennis Diener)彻夜难眠的原因,他从负片上重新打印了显微照片。随着太阳的升起,我只有足够的时间去乘早班火车去波士顿。当美铁列车从纽黑文车站驶出时,我听到声音在咆哮,“科兹敏斯基,醒来!”这不是梦。罗森鲍姆(Rosenbaum)在过道上,谈论微管蛋白的乙酰化以及我对论文计划B的需求。我同意。头转过头来。那天早上肯定没有更好的对话可以窃听。衣藻衣藻是底物-细胞表面相互作用的杰出模型。 1977年,当时是Rosenbaum实验室的一名博士后的Robert Bloodgood发现了一种新颖的鞭毛运动性,这种鞭毛运动与鞭毛的跳动无关,这一点在1977年变得很明显。他发现附着在鞭毛表面的聚苯乙烯球以快速,双向,稳定的方式运动(Bloodgood,1977)。这种球运动被认为是全细胞滑行运动的表现,当衣原体细胞以完全不依赖鞭毛跳动的方式通过鞭毛沿着基质移动时会发生这种运动。迄今为止,全细胞滑动的机制尚不完全清楚,仍然是研究细胞表面-底物界面细胞信号传导的非常成熟的领域。那天早上我在美铁的问题是:“我们要寻找什么?”罗森鲍姆(Rosenbaum)希望我通过使用透化细胞模型找到驱动球在鞭毛表面运动的机制。他进行了演讲,向我介绍了有关动力蛋白活化的早期研究。我反驳说,我们应该在鞭毛内寻找驱动蛋白,因为球的运动是双向的,而当时看来研究得很好的动力蛋白可能仅适用于单向运动。我记得我对驱动蛋白的偏爱是对动力蛋白的,这仅仅是因为驱动蛋白是一个相对较新的发现,因此是“很酷的”。罗森鲍姆(Rosenbaum)喜欢我的驱动蛋白的想法,并开始进行60英里的解释,说明纤毛/鞭毛与神经元如何相同。也就是说,如果在轴质中发现驱动蛋白,则会在鞭毛中发现。在Amtrak上行驶60英里很长一段时间。就是这样-寒假过后,我要使用透化细胞模型来搜索鞭毛驱动蛋白在鞭毛表面上运动的鞭毛驱动蛋白。新的一年带来了新的讨论。假期回来后,同样在我的论文委员会工作的罗森鲍姆(Rosenbaum)和马克·穆斯凯(Mark Mooseker)促使我努力进行径向辐条装配。辐条是从轴突的中心微管对向外部双峰微管延伸的蛋白质复合物。我以Petrine风格拒绝了三遍。我说,相对于分子马达,“辐条很无聊”。最后,我占了上风,Rosenbaum允许我至少在短时间内探索鞭毛表面的运动性,就像我们在去波士顿的火车上讨论的那样。我非常幸运有一位顾问进行探索性尝试。它使科学变得更加有趣。而且,因此记录很清楚,罗森鲍姆(Rosenbaum)推动径向辐照研究并没有错。斯波克

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号