首页> 外文期刊>Molecular biology of the cell >Molecular motors: forty years of interdisciplinary research
【24h】

Molecular motors: forty years of interdisciplinary research

机译:分子马达:跨学科研究四十年

获取原文
           

摘要

A mere forty years ago it was unclear what motor molecules exist in cells that could be responsible for the variety of nonmuscle cell movements, including the “saltatory cytoplasmic particle movements” apparent by light microscopy. One wondered whether nonmuscle cells might have a myosin-like molecule, well known to investigators of muscle. Now we know that there are more than a hundred different molecular motors in eukaryotic cells that drive numerous biological processes and organize the cell's dynamic city plan. Furthermore, in vitro motility assays, taken to the single-molecule level using techniques of physics, have allowed detailed characterization of the processes by which motor molecules transduce the chemical energy of ATP hydrolysis into mechanical movement. Molecular motor research is now at an exciting threshold of being able to enter into the realm of clinical applications. It is an honor to be sharing the E. B. Wilson Medal with two friends and outstanding scientists, Dick McIntosh and Gary Borisy. We were all introduced to cytoskeletal research at about the same time. In my case, I was introduced to actin and myosin as a postdoctoral fellow at the MRC Laboratory of Molecular Biology in Cambridge, England, working with Hugh Huxley, on whose shoulders all molecular motor researchers stand. Hugh shared the 1983 E. B. Wilson Medal with Joseph Gall. My work with Hugh in 1969 and 1970 on the actin-tropomyosin-troponin-myosin muscle complex led us to postulate the steric blocking mechanism of calcium regulation of skeletal muscle ( Spudich et al. , 1972 ) , more fully developed by Hugh elsewhere (Huxley, 1973). After leaving Cambridge in 1971, I started my laboratory at the University of California, San Francisco, where I spent my first 6 years as a faculty member. In 1977, I moved to Stanford University. Over the years, I have had the privilege of working with the very best students, postdoctoral fellows, research associates, sabbatical visitors, and collaborators. This essay is a tribute to their contributions, rather than a minireview of the field. As it is, due to space limitations, I have had to leave out important contributions by many of my talented lab members, but a complete list of their contributions can be found on our laboratory website ( http://spudlab.stanford.edu ). This is a story of how our research evolved from 1971 to the present day. To put things in perspective, two key questions about molecular motors around that time were: How does myosin transduce the chemical energy of ATP hydrolysis into mechanical movement?, and What kind of mole-cular motors are in nonmuscle cells? I decided to focus on two goals: first, to develop quantitative in vitro motility assays for myosin movement on actin, essential for understanding energy transduction in this system; and second, to try to unravel the molecular basis of the myriad nonmuscle cell movements made apparent by light microscopy. During the first year of my assistant professorship, we searched for an ideal model system to study cell movements. We grew Neurospora , Saccharomyces , Physarum , Dictyostelium, Nitella , and other organisms totally unfamiliar to me at the time and searched for a myosin-like motor. Dictyostelium proved to be perfect for this purpose. Margaret Clarke, one of my first postdoctoral fellows, identified a Dictyostelium myosin with properties similar to those of conventional muscle myosin ( Clarke and Spudich, 1974 ), and we then developed methods for visualizing the cytoskeleton in this and other nonmuscle cells ( Clarke et al. , 1975 ; Brown et al. , 1976 ). FIGURE 1: The first Spudich lab group photo, University of California, San Francisco, 1974. Regarding an in vitro motility assay, Dictyostelium , being a phagocytic organism, offered promise. Actin filaments were known to be in the cortex of nonmuscle cells, with their barbed ends at the cell membrane ( Ishikawa et al. , 1969 ; Schroeder, 1973 ). I fed Dictyostelium small polystyrene beads and isolated the phagocytic vesicles from cell lysates, and found that the vesicles had actin filaments emanating from the membrane-coated surfaces. With great excitement, I tried to establish in vitro motility of these vesicles along myosin-coated coverslips, but directed movements were not readily apparent, and a definitive in vitro motility assay would wait another decade.
机译:仅仅四十年前,尚不清楚细胞中存在哪些运动分子,这些运动分子可能导致多种非肌肉细胞运动,包括光学显微镜观察到的“盐质细胞质颗粒运动”。一个人想知道非肌肉细胞是否可能具有肌球蛋白样分子,这是肌肉研究者所熟知的。现在我们知道,真核细胞中有一百多种不同的分子马达,它们驱动着许多生物过程并组织了细胞的动态城市规划。此外,使用物理技术将体外运动性分析提高到单分子水平,可以详细表征运动分子将ATP水解的化学能转化为机械运动的过程。现在,分子运动研究处于进入临床应用领域的令人兴奋的门槛。与两个朋友和杰出的科学家Dick McIntosh和Gary Borisy分享E.B.威尔逊奖章是一种荣幸。我们都几乎同时被介绍给细胞骨架研究。以我为例,我在英格兰剑桥的MRC分子生物学实验室担任博士后研究员,与肌动蛋白和肌球蛋白一起被介绍给休·赫x黎(Hugh Huxley),所有分子运动研究人员都站在他的肩膀上。休与约瑟夫·加尔(Joseph Gall)分享了1983年的E. B.威尔逊奖章。 1969年和1970年,我与休(Hugh)合作研究了肌动蛋白-肌钙蛋白-肌钙蛋白-肌球蛋白肌复合物,我们推测骨骼肌钙调节的空间阻滞机制(Spudich等,1972),由休在其他地方更全面地发展(Huxley) (1973年)。 1971年离开剑桥大学后,我在加利福尼亚大学旧金山分校开始了我的实验室,在那里度过了我最初的6年教职经历。 1977年,我搬到了斯坦福大学。多年来,我有幸与最优秀的学生,博士后研究员,研究助理,放假者和合作者一起工作。本文是对他们的贡献的致敬,而不是对该领域的简要回顾。实际上,由于篇幅所限,我不得不遗漏许多有才华的实验室成员的重要贡献,但是可以在我们的实验室网站(http://spudlab.stanford.edu)上找到他们的完整贡献清单。 。这是关于我们的研究从1971年发展到今天的故事。顺便一提,关于分子马达的两个关键问题是:肌球蛋白如何将ATP水解的化学能转化为机械运动?以及非肌肉细胞中存在哪种分子马达?我决定着重于两个目标:首先,开发肌动蛋白肌球蛋白运动的定量体外运动测定法,这对于了解该系统中的能量传导至关重要。其次,试图揭示通过光学显微镜观察到的无数无肌肉细胞运动的分子基础。在我担任助理教授的第一年,我们寻找了一种理想的模型系统来研究细胞运动。我们生长了当时对我完全不熟悉的Neurospora,酿酒酵母,Physarum,Dictyostelium,Nitella和其他生物,并寻找了类似肌球蛋白的运动。 Dictyostelium被证明是用于此目的的理想选择。我的第一个博士后研究员玛格丽特·克拉克(Margaret Clarke)鉴定出一种Dictyostelium肌球蛋白,其特性与传统的肌肉肌球蛋白相似(Clarke and Spudich,1974),然后,我们开发了可视化该及其他非肌肉细胞中细胞骨架的方法(Clarke等人) ,1975;布朗等人,1976)。图1:Spudich实验室的第一张集体照,1974年,加利福尼亚大学,旧金山。关于体外运动测定,Dictyostelium是一种吞噬细胞,提供了希望。已知肌动蛋白丝位于非肌肉细胞的皮层中,其带刺的末端位于细胞膜上(Ishikawa等,1969; Schroeder,1973)。我喂食了小球藻的聚苯乙烯小珠,并从细胞裂解物中分离出了吞噬性囊泡,发现该囊泡的肌动蛋白丝来自于膜表面。激动不已的是,我试图沿着肌球蛋白包被的盖玻片确定这些囊泡的体外运动性,但定向运动并不明显,而确定的体外运动性试验将再等十年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号