...
首页> 外文期刊>Minerals >Coprecipitation of Co 2+ , Ni 2+ and Zn 2+ with Mn(III/IV) Oxides Formed in Metal-Rich Mine Waters
【24h】

Coprecipitation of Co 2+ , Ni 2+ and Zn 2+ with Mn(III/IV) Oxides Formed in Metal-Rich Mine Waters

机译:富金属矿井水中形成的Mn(III / IV)氧化物与Co 2+,Ni 2+和Zn 2+共沉淀

获取原文

摘要

Manganese oxides are widespread in soils and natural waters, and their capacity to adsorb different trace metals such as Co, Ni, or Zn is well known. In this study, we aimed to compare the extent of trace metal coprecipitation in different Mn oxides formed during Mn(II) oxidation in highly concentrated, metal-rich mine waters. For this purpose, mine water samples collected from the deepest part of several acidic pit lakes in Spain (pH 2.7–4.2), with very high concentration of manganese (358–892 mg/L Mn) and trace metals (e.g., 795–10,394 μg/L Ni, 678–11,081 μg/L Co, 259–624 mg/L Zn), were neutralized to pH 8.0 in the laboratory and later used for Mn(II) oxidation experiments. These waters were subsequently allowed to oxidize at room temperature and pH = 8.5–9.0 over several weeks until Mn(II) was totally oxidized and a dense layer of manganese precipitates had been formed. These solids were characterized by different techniques for investigating the mineral phases formed and the amount of coprecipitated trace metals. All Mn oxides were fine-grained and poorly crystalline. Evidence from X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled to Energy Dispersive X-Ray Spectroscopy (SEM–EDX) suggests the formation of different manganese oxides with varying oxidation state ranging from Mn(III) (e.g., manganite) and Mn(III/IV) (e.g., birnessite, todorokite) to Mn(IV) (e.g., asbolane). Whole-precipitate analyses by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and/or Atomic Absorption Spectrometry (AAS), provided important concentrations of trace metals in birnessite (e.g., up to 1424 ppm Co, 814 ppm Ni, and 2713 ppm Zn), while Co and Ni concentrations at weight percent units were detected in asbolane by SEM-EDX. This trace metal retention capacity is lower than that observed in natural Mn oxides (e.g., birnessite) formed in the water column in a circum-neutral pit lake (pH 7.0–8.0), or in desautelsite obtained in previous neutralization experiments (pH 9.0–10.0). However, given the very high amount of Mn sorbent material formed in the solutions (2.8–4.6 g/L Mn oxide), the formation of these Mn(III/IV) oxides invariably led to the virtually total removal of Co, Ni, and Zn from the aqueous phase. We evaluate these data in the context of mine water pollution treatment and recovery of critical metals.
机译:锰氧化物广泛存在于土壤和天然水中,并且其吸附不同痕量金属(例如Co,Ni或Zn)的能力是众所周知的。在这项研究中,我们旨在比较高浓度,富含金属的矿井水中Mn(II)氧化过程中形成的不同Mn氧化物中痕量金属的共沉淀程度。为此,从西班牙几个酸性坑湖的最深处(pH值为2.7–4.2)收集的矿井水样品中锰(358–892 mg / L锰)和痕量金属(例如795–10,394)的浓度很高。微克/升镍(678-11,081微克/升Co,259-624毫克/升锌)在实验室中和至pH 8.0,随后用于Mn(II)氧化实验。随后允许这些水在室温和pH = 8.5–9.0的条件下氧化数周,直到Mn(II)被完全氧化并形成致密的锰沉淀层。这些固体的特征在于采用了不同的技术来研究所形成的矿物相和共沉淀痕量金属的量。所有的锰氧化物都是细晶粒且结晶性差。 X射线衍射(XRD)和扫描电子显微镜与能量色散X射线光谱(SEM-EDX)耦合的证据表明,形成了不同的氧化锰,其氧化态从Mn(III)(例如锰矿)到Mn (III / IV)(例如水钠锰矿,白云母)转变成Mn(IV)(例如石蜡烷)。通过电感耦合等离子体质谱法(ICP-MS),电感耦合等离子体原子发射光谱法(ICP-AES)和/或原子吸收光谱法(AAS)进行的全沉淀分析提供了重要的浓度的水钠锰矿中的痕量金属(例如,高达1424 ppm的Co,814 ppm的Ni和2713 ppm的Zn),而通过SEM-EDX在Asbolane中检测到以重量百分比单位计的Co和Ni浓度。这种痕量金属的保留能力低于在中性坑湖(pH 7.0-8.0)或先前中和实验(pH 9.0-9.0)获得的淡水石中水柱中形成的天然锰氧化物(例如水钠锰矿)中观察到的金属保留能力。 10.0)。但是,考虑到溶液中形成的大量锰吸附剂材料(2.8-4.6 g / L Mn氧化物),这些Mn(III / IV)氧化物的形成不可避免地导致实际上全部去除Co,Ni和水相中的锌。我们在矿井水污染处理和关键金属回收的背景下评估这些数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号