首页> 外文期刊>Microsystems & Nanoengineering >Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding
【24h】

Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding

机译:通过3D打印的传递模塑和粘合快速组装多层微流体结构

获取原文
       

摘要

A 3D printing technique for fabricating multilayered microfluidic devices promises to overcome the limitations of conventional fabrication. Advances in microfluidic technology are proving invaluable for disease diagnosis, DNA analysis, and drug discovery, but lithography-based device construction is time-consuming, reliant on costly infrastructure, and restricted to rectangular features. To address these limitations, Casey Glick at the University of California, Berkeley, United States, and his colleagues developed a versatile 3D printed transfer molding technique enabling them to mold flexible polymers into arbitrary configurations, such as thin membranes and controllable microvalves. They also rapidly assembled multiple layers into a single device; by using custom alignment marks and 3D printed stamps, they selectively applied adhesives without clogging the hair-width microfluidic channels. The team's work paves the way for the cheap and speedy manufacture of sophisticated multilayer microfluidic systems.
机译:用于制造多层微流体装置的3D打印技术有望克服常规制造的局限性。微流体技术的进步被证明对疾病诊断,DNA分析和药物发现具有不可估量的价值,但是基于光刻的设备构造非常耗时,依赖于昂贵的基础设施,并且仅限于矩形特征。为了解决这些限制,美国加州大学伯克利分校的Casey Glick及其同事开发了一种通用的3D打印传递模塑技术,使他们能够将柔性聚合物模塑成任意配置,例如薄膜和可控微型阀。他们还将多层快速组装到一个设备中。通过使用自定义的对准标记和3D打印的图章,他们有选择地施加了粘合剂,而不会阻塞头发宽度的微流体通道。团队的工作为廉价,快速地制造复杂的多层微流体系统铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号