首页> 外文期刊>Microbiological reviews >To shape a cell: an inquiry into the causes of morphogenesis of microorganisms.
【24h】

To shape a cell: an inquiry into the causes of morphogenesis of microorganisms.

机译:塑造细胞:探究微生物形态发生的原因。

获取原文
       

摘要

We recognize organisms first and foremost by their forms, but how they grow and shape themselves still largely passes understanding. The objective of this article is to survey what has been learned of morphogenesis of walled eucaryotic microorganisms as a set of problems in cellular heredity, biochemistry, physiology, and organization. Despite the diversity of microbial forms and habits, some common principles can be discerned. (i) That the form of each organism represents the expression of a genetic program is almost universally taken for granted. However, reflection on the findings with morphologically aberrant mutants suggests that the metaphor of a genetic program is misleading. Cellular form is generated by a web of interacting chemical and physical processes, whose every strand is woven of multiple gene products. The relationship between genes and form is indirect and cumulative; therefore, morphogenesis must be addressed as a problem not of molecular genetics but of cellular physiology. (ii) The shape of walled cells is determined by the manner in which the wall is laid down during growth and development. Turgor pressure commonly, perhaps always, supplies the driving force for surface enlargement. Cells yield to this scalar force by localized, controlled wall synthesis; their forms represent variations on the theme of local compliance with global force. (iii) Growth and division in bacteria display most immediately the interplay of hydrostatic pressure, localized wall synthesis, and structural constraints. Koch's surface stress theory provides a comprehensive and quantitative framework for understanding bacterial shapes. (iv) In the larger and more versatile eucaryotic cells, expansion is mediated by the secretion of vesicles. Secretion and ancillary processes, such as cytoplasmic transport, are spatially organized on the micrometer scale. The diversity of vectorial physiology and of the forms it generates is illustrated by examples: apical growth of fungal hyphae, bud formation in yeasts, germination of fucoid zygotes, and development of cells of Nitella, Closterium, and other unicellular algae. (v) Unicellular organisms, no less than embryos, have a remarkable capacity to impose spatial order upon themselves with or without the help of directional cues. Self-organization is reviewed here from two perspectives: the theoretical exploration of morphogens, gradients, and fields, and experimental study of polarization in Fucus cells, extension of hyphal tips, and pattern formation in ciliates. Here is the heart of the matter, yet self-organization remains nearly as mysterious as it was a century ago, a subject in search of a paradigm.
机译:我们首先通过形式认识生物,但是它们如何生长和塑造自身仍然很大程度上可以通过理解。本文的目的是调查已经了解的壁真核微生物的形态发生的知识,这是细胞遗传,生物化学,生理学和组织方面的一系列问题。尽管微生物的形式和习性多种多样,但仍可以辨认出一些共同的原理。 (i)几乎普遍认为,每种生物的形式都代表遗传程序的表达。然而,对形态异常的突变体的发现的反思表明,遗传程序的隐喻具有误导性。细胞形式是通过相互作用的化学和物理过程网络生成的,其每条链都由多种基因产物编织而成。基因和形式之间的关系是间接和累积的;因此,形态发生必须解决的不是分子遗传学问题,而是细胞生理学的问题。 (ii)壁细胞的形状取决于生长和发育过程中壁的铺放方式。通常,也许总是会施加压力,而压力会为表面扩大提供动力。细胞通过局部可控的壁合成而屈服于这种标量力。它们的形式代表了当地遵守全球兵力主题的变化。 (iii)细菌的生长和分裂最直接地表现出静水压力,局部壁合成和结构限制的相互作用。 Koch的表面应力理论为理解细菌形状提供了一个全面而定量的框架。 (iv)在更大和更通用的真核细胞中,扩张是由囊泡的分泌介导的。分泌和辅助过程(例如细胞质运输)在微米尺度上在空间上组织。向量生理学及其产生形式的多样性通过以下例子说明:真菌菌丝的顶端生长,酵母中芽的形成,岩藻类合子的萌发以及Nitella,梭状芽胞杆菌和其他单细胞藻类的细胞发育。 (v)单细胞有机体,不仅是胚胎,在有或没有方向性提示的帮助下,具有强加的空间顺序。本文从两个角度对自组织进行了综述:形态发生子,梯度和场的理论探索,以及Fucus细胞中极化的实验研究,菌丝尖端的延伸和纤毛虫的模式形成。这是问题的核心,但是自组织仍然像一个世纪前一样神秘,这是一个寻找范例的主题。

著录项

  • 来源
    《Microbiological reviews》 |1990年第4期|共51页
  • 作者

    F M Harold;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类 Q9;
  • 关键词

  • 入库时间 2022-08-18 11:36:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号