...
首页> 外文期刊>MicrobiologyOpen >Reversible oxygen‐tolerant hydrogenase carried by free‐living N2‐fixing bacteria isolated from the rhizospheres of rice, maize, and wheat
【24h】

Reversible oxygen‐tolerant hydrogenase carried by free‐living N2‐fixing bacteria isolated from the rhizospheres of rice, maize, and wheat

机译:从水稻,玉米和小麦的根际中分离出来的固氮细菌自由携带的可逆耐氧性氢酶

获取原文
           

摘要

AbstractHydrogen production by microorganisms is often described as a promising sustainable and clean energy source, but still faces several obstacles, which prevent practical application. Among them, oxygen sensitivity of hydrogenases represents one of the major limitations hampering the biotechnological implementation of photobiological production processes. Here, we describe a hierarchical biodiversity-based approach, including a chemochromic screening of hydrogenase activity of hundreds of bacterial strains collected from several ecosystems, followed by mass spectrometry measurements of hydrogenase activity of a selection of the H2-oxidizing bacterial strains identified during the screen. In all, 131 of 1266 strains, isolated from cereal rhizospheres and basins containing irradiating waste, were scored as H2-oxidizing bacteria, including Pseudomonas sp., Serratia sp., Stenotrophomonas sp., Enterobacter sp., Rahnella sp., Burkholderia sp., and Ralstonia sp. isolates. Four free-living N2-fixing bacteria harbored a high and oxygen-tolerant hydrogenase activity, which was not fully inhibited within entire cells up to 150–250 μmol/L O2 concentration or within soluble protein extracts up to 25–30 μmol/L. The only hydrogenase-related genes that we could reveal in these strains were of the hyc type (subunits of formate hydrogenlyase complex). The four free-living N2-fixing bacteria were closely related to Enterobacter radicincitans based on the sequences of four genes (16S rRNA, rpoB, hsp60, and hycE genes). These results should bring interesting prospects for microbial biohydrogen production and might have ecophysiological significance for bacterial adaptation to the oxic–anoxic interfaces in the rhizosphere.
机译:摘要微生物生产氢经常被描述为一种有希望的可持续清洁能源,但仍然面临许多障碍,阻碍了其实际应用。其中,氢化酶的氧敏感性代表阻碍光生物生产过程的生物技术实施的主要限制之一。在这里,我们描述了一种基于生物多样性的分层方法,包括对从多个生态系统中收集的数百种细菌菌株的氢化酶活性进行化学变色筛选,然后通过质谱法测量所选H 2 的氢化酶活性。 -在筛选过程中鉴定出的氧化细菌菌株。从谷物根际和含有辐射废物的盆地中分离出的1266株菌株中的131株被评为H 2 氧化细菌,包括假单胞菌属,沙雷氏菌属,嗜单胞菌属,肠杆菌属。 ,Rahnella sp。,Burkholderia sp。和Ralstonia sp。隔离株。四种自由活动的N 2 固定细菌具有很高的耐氧氢酶活性,在整个细胞中直至150–250μmol / LO 2 都没有被完全抑制。浓度或可溶蛋白提取物中的浓度高达25–30μmol/ L。我们可以在这些菌株中揭示的唯一与氢化酶相关的基因是hyc型(甲酸氢解酶复合物的亚基)。根据四种基因(16S rRNA,rpoB,hsp60和hycE基因)的序列,四种自由活动的N 2 固定细菌与放射线肠杆菌密切相关。这些结果将为微生物生物氢的生产带来有趣的前景,并且可能对细菌适应根际中的氧-缺氧界面具有生态生理意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号