首页> 外文期刊>Micromachines >Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force
【24h】

Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force

机译:可见光诱导介电电泳(DEP)力制备微米级和纳米级聚合物结构

获取原文
获取外文期刊封面目录资料

摘要

We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D) polymer structures using visible light sources instead of ultra-violet (UV) light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks) for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1) any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol) (PEG)-diacrylate hydrogel structures are shown in this paper); (2) an Optically-induced Dielectrophoresis (ODEP) System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light), an optical microscope, a projector, and a computer; and (3) an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c.) electrical potential across the polymer solution (typically ∼20 Vp-p at 10 kHz), solid polymer microano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions) and the thickness (height) of the microano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ∼0.2 to 0.4 mW/cm2 for 10 s, ∼200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ∼200 nanometers to ∼3 micrometers structures. However, in the in-plane dimensions, only ∼7 μm resolution can be achieved now, due to the optical diffraction limit and the physical dimensions of DMD mirrors in the projector. Nevertheless, with higher quality optical components, the in-plane resolution is expected to be sub-micron.
机译:我们在本文中报告了一种新颖,廉价,灵活的方法,该方法使用可见光源而不是紫外线(UV)光源或激光器来制造微米级和纳米级的三维(3D)聚合物结构。该方法也不需要用于图案化和制造诸如水凝胶的聚合物结构的常规微光刻技术(即,光刻掩模)。这种新型制造技术所需的主要材料和方法是:(1)任何光敏聚合物的交联网络(本文显示了制造的聚乙二醇(PEG)-二丙烯酸酯水凝胶结构的例子); (2)光诱导介电电泳(ODEP)系统,其包括“ ODEP芯片”(即,暴露于可见光时改变其表面电导率的任何芯片),光学显微镜,投影仪和计算机; (3)托管在计算机上的动画制作软件,可以生成虚拟或动态模式,可以通过使用投影仪和聚光镜将其投影到“ ODEP芯片”上。从本质上讲,是将光敏聚合物溶液放在由“ ODEP芯片”粘合到另一个基板上形成的微流体平台内部,并在聚合物溶液上施加交流电(ac)电位(通常约为20 V pp 在10 kHz时),然后当可见光投射到芯片上时,可以在“ ODEP芯片”表面上形成固态聚合物微/纳米结构。微/纳米结构的二维横向几何形状(x和y尺寸)和厚度(高度)由投射到“ ODEP芯片”上的可见光的图像几何形状以及投射的持续时间决定。通常,在强度约为0.2至0.4 mW / cm 2 的图像投影10 s后,可以形成约200 nm的高结构。在我们当前的系统中,可以控制这些聚合物结构的厚度,使其形成从约200纳米到约3微米的结构。但是,由于光学衍射极限和投影机中DMD镜的物理尺寸,在平面内尺寸上,现在只能实现约7μm的分辨率。然而,对于更高质量的光学组件,面内分辨率有望达到亚微米。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号