首页> 外文期刊>Frontiers in Human Neuroscience >Commentary: Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning
【24h】

Commentary: Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning

机译:评论:合作而非竞争:双半球tDCS和fMRI在运动学习中显示同侧半球的作用

获取原文
           

摘要

Therapy to facilitate motor learning requires a priori knowledge of the motor system. The “interhemispheric competition” model posits that the contralateral hemisphere suppresses activity of the ipsilateral hemisphere to reduce putative interference of ipsilateral descending pathways thought to degrade motor performance. Non-invasive brain stimulation paradigms are well positioned to test models of motor control. For instance, transcranial direct current stimulation (tDCS) applied to the human motor cortex (M1), can induce polarity-dependent changes in corticospinal excitability that outlast the period of stimulation. Therefore, facilitatory anodal tDCS of the contralateral hemisphere and/or inhibitory cathodal tDCS of the ipsilateral hemisphere should enhance motor learning. While the interhemispheric competition model has guided therapeutic application of tDCS in neurorehabilitation (Di Pino et al., 2014 ), there is some evidence supporting a role of the ipsilateral hemisphere in shaping motor output (Verstynen et al., 2005 ; Cabibel et al., 2018 ). As a result, the interhemispheric competition model may be oversimplified or partially inaccurate and requires further investigation. Recently, Waters et al. ( 2017 ) investigated the role of the ipsilateral hemisphere in learning of a sequential key-press task. Subjects were pseudo randomized to one of four tDCS groups: unihemispheric (anode contralateral M1, cathode ipsilateral supraorbital ridge), conventional bihemispheric (anode contralateral M1, cathode ipsilateral M1), reverse-polarity bihemispheric (anode ipsilateral M1, cathode contralateral M1), and sham. Stimulation (2 mA) was applied over 4 consecutive days for the first 25 min of a ~60 min training session. Conventional and reverse-polarity bihemispheric stimulation resulted in learning improvements beyond that observed following unihemispheric and sham stimulation. Functional magnetic resonance imaging (fMRI) found both conventional and reverse-polarity bihemispheric tDCS increased task-related activation of contralateral and ipsilateral hemispheres relative to sham. It was therefore suggested that bihemispheric tDCS, irrespective of polarity, led to similar improvements in motor learning and increased neural activation in both hemispheres, supporting “interhemispheric cooperation” as opposed to “interhemispheric competition.” While the conclusions of Waters et al. ( 2017 ) were supported by both behavioral and functional neuroimaging data, the direct interpretation of the latter, at least, should be further examined. FMRI blood oxygenation level-dependent (BOLD) responses provide an indirect measure of neural activity, and therefore cannot readily distinguish between excitatory and inhibitory synaptic activity (Arthurs and Boniface, 2002 ). In support, a previous study found anodal and cathodal tDCS both increased task-related BOLD activity despite having facilitatory and inhibitory effects on corticospinal excitability, respectively (Stagg et al., 2009 ). It may be that both facilitatory and inhibitory synaptic activity increase BOLD response through a cascade of events at cellular and molecular levels with long-lasting after-effects mediated by a shift in metabolically demanding NMDA and GABA receptor activity (Arthurs and Boniface, 2002 ). These tDCS induced effects may last for a number of days and could explain why Waters et al. ( 2017 ) observed increased BOLD activity for both conventional and reverse-polarity bihemispheric stimulation. Nevertheless, both conventional and reverse-polarity bihemispheric tDCS induce similar improvements in motor learning. To explain this observation, Waters et al. ( 2017 ) propose that the effects of stimulation may have been polarity-unspecific since the response to stimulation was similar despite reversal of polarity. While acknowledging that the inclusion of transcranial magnetic stimulation (TMS) to quantify changes in cortical excitability by recording motor evoked potentials (MEPs) following tDCS would help confirm this suggestion, there may be additional explanations which require consideration. Although convention suggests anodal stimulation increases and cathodal stimulation decreases excitability, responses are known to be variable in magnitude and direction. Higher intensity and/or longer duration of stimulation can modulate or reverse tDCS response (Monte-Silva et al., 2013 ; Jamil et al., 2017 ). Interestingly, previous studies have reported bihemispheric tDCS applied for 15 min at 1–1.5 mA resulted in the expected polarity specific modulation of excitability in each hemisphere (Goodwill et al., 2013 ; Tazoe et al., 2014 ). It may be that the higher intensity (2 mA) or longer duration of stimulation (25 min) used by Waters et al. ( 2017 ) has caused tDCS after-effects to differ from the canonical modulation of excitability. Furthermore, the susceptibility of tDCS after-effects to inter- and intra-individual sources of variability bears conside
机译:促进运动学习的疗法需要运动系统的先验知识。 “半球间竞争”模型假定对侧半球抑制同侧半球的活动,以减少被认为会降低运动性能的同侧下降路径的推定干扰。非侵入性脑刺激范例可以很好地定位运动控制模型。例如,应用于人运动皮层(M1)的经颅直流电刺激(tDCS)可以引起皮质脊髓兴奋性的极性依赖性变化,从而延长刺激时间。因此,对侧半球的促进性阳极tDCS和/或同侧半球的抑制性阴极tDCS应该增强运动学习。尽管半球间竞争模型指导了tDCS在神经康复中的治疗应用(Di Pino等,2014),但有一些证据支持同侧半球在塑造运动输出中的作用(Verstynen等,2005; Cabibel等。 ,2018)。结果,半球间竞争模型可能过于简化或部分不准确,需要进一步研究。最近,沃特斯等。 (2017)研究了同侧半球在学习顺序按键任务中的作用。将受试者伪随机分为四个tDCS组之一:单半球(阳极对侧M1,阴极同侧眶上ra),常规双半球(阳极对侧M1,阴极同侧M1),反极性双半球(阳极同侧M1,阴极对侧M1)和假。在约60分钟的训练过程中的前25分钟内,连续4天施加刺激(2 mA)。常规的和反极性的双半球刺激导致学习改善,超出了单半球和假刺激后观察到的改善。功能磁共振成像(fMRI)发现,相对于假手术,常规和反极性双半球tDCS都增加了与任务相关的对侧和同侧半球的激活。因此,有人提出,无论极性如何,双半球的tDCS都导致了运动学习方面的类似改善,并且两个半球的神经激活都增加了,从而支持了“半球合作”而不是“半球竞争”。虽然沃特斯等人的结论。 (2017)的行为和功能性神经影像学数据均得到支持,至少应进一步检查后者的直接解释。 FMRI血液氧合水平依赖性(BOLD)反应提供了神经活动的间接量度,因此不能轻易地区分兴奋性和抑制性突触活动(Arthurs和Boniface,2002)。作为支持,一项先前的研究发现,尽管阳极和阴极tDCS分别对皮质脊髓兴奋性具有促进作用和抑制作用,但它们均增加了与任务相关的BOLD活动(Stagg等,2009)。可能是通过在细胞和分子水平上的级联事件以及通过代谢需要的NMDA和GABA受体活性的变化介导的持久后效应,促进和抑制突触活性都增加了BOLD反应(Arthurs和Boniface,2002)。这些tDCS诱导的作用可能持续数天,并可以解释为什么Waters等人。 (2017)观察到常规和反极性双半球刺激的BOLD活性均增加。然而,传统的和反极性的双半球tDCS都在运动学习中引起了类似的改善。为了解释这一发现,沃特斯等人。 (2017)提出刺激的影响可能是极性非特异性的,因为尽管极性反转,对刺激的反应也相似。虽然承认通过记录tDCS后通过记录运动诱发电位(MEP)来进行经颅磁刺激(TMS)来量化皮层兴奋性变化将有助于证实这一建议,但可能需要进行其他解释。尽管惯例表明阳极刺激会增加,而阴极刺激会降低兴奋性,但已知响应的幅度和方向是可变的。更高的刺激强度和/或更长的刺激持续时间可以调节或逆转tDCS反应(Monte-Silva等,2013; Jamil等,2017)。有趣的是,以前的研究已经报道了双半球tDCS在1–1.5 mA下应用​​15分钟,导致每个半球预期的极性特异性的兴奋性调节(Goodwill等,2013; Tazoe等,2014)。沃特斯(Waters)等人使用的强度更高(2 mA)或刺激时间更长(25分钟)。 (2017)导致tDCS的后效不同于对兴奋性的规范调节。此外,考虑到tDCS后效应对个体间和个体内变异性的敏感性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号