首页> 外文期刊>Frontiers in Human Neuroscience >Structure Function Revisited: A Simple Tool for Complex Analysis of Neuronal Activity
【24h】

Structure Function Revisited: A Simple Tool for Complex Analysis of Neuronal Activity

机译:再谈结构功能:复杂的神经元活动分析的简单工具

获取原文
           

摘要

Neural systems are characterized by their complex dynamics, reflected on signals produced by neurons and neuronal ensembles. This complexity exhibits specific features in health, disease and in different states of consciousness, and can be considered a hallmark of certain neurologic and neuropsychiatric conditions. To measure complexity from neurophysiologic signals, a number of different nonlinear tools of analysis are available. However, not all of these tools are easy to implement, or able to handle clinical data, often obtained in less than ideal conditions in comparison to laboratory or simulated data. Recently, the temporal structure function emerged as a powerful tool for the analysis of complex properties of neuronal activity. The temporal structure function is efficient computationally and it can be robustly estimated from short signals. However, the application of this tool to neuronal data is relatively new, making the interpretation of results difficult. In this methods paper we describe a step by step algorithm for the calculation and characterization of the structure function. We apply this algorithm to oscillatory, random and complex toy signals, and test the effect of added noise. We show that: (1) the mean slope of the structure function is zero in the case of random signals; (2) oscillations are reflected on the shape of the structure function, but they don't modify the mean slope if complex correlations are absent; (3) nonlinear systems produce structure functions with nonzero slope up to a critical point, where the function turns into a plateau. Two characteristic numbers can be extracted to quantify the behavior of the structure function in the case of nonlinear systems: (1). the point where the plateau starts (the inflection point, where the slope change occurs), and (2). the height of the plateau. While the inflection point is related to the scale where correlations weaken, the height of the plateau is related to the noise present in the signal. To exemplify our method we calculate structure functions of neuronal recordings from the basal ganglia of parkinsonian and healthy rats, and draw guidelines for their interpretation in light of the results obtained from our toy signals.
机译:神经系统的特征在于其复杂的动力学,反映在神经元和神经元集成体产生的信号上。这种复杂性在健康,疾病和不同的意识状态中表现出特定的特征,并且可以被认为是某些神经系统疾病和神经精神疾病的标志。为了从神经生理信号中测量复杂度,可以使用许多不同的非线性分析工具。但是,并非所有这些工具都易于实施或能够处理临床数据,与实验室或模拟数据相比,这些数据通常在不太理想的条件下获得。最近,时间结构功能作为分析神经元活动的复杂特性的有力工具而出现。时间结构函数在计算上是有效的,并且可以从短信号中进行稳健地估计。但是,此工具在神经元数据中的应用相对较新,因此难以解释结果。在该方法论文中,我们描述了用于计算和表征结构函数的分步算法。我们将此算法应用于振荡,随机和复杂的玩具信号,并测试添加的噪声的影响。我们证明:(1)在随机信号的情况下,结构函数的平均斜率为零; (2)振荡反映在结构函数的形状上,但是如果没有复杂的相关性,则它们不会改变平均斜率; (3)非线性系统产生的结构函数具有直至临界点的非零斜率,在临界点处该函数变为平稳状态。对于非线性系统,可以提取两个特征数来量化结构函数的行为:(1)。平台开始的点(拐点,发生坡度变化),和(2)。高原的高度。尽管拐点与相关性减弱的标度相关,但平稳段的高度与信号中存在的噪声相关。为了举例说明我们的方法,我们从帕金森氏症和健康大鼠的基底神经节计算神经元记录的结构功能,并根据从我们的玩具信号中获得的结果为它们的解释画出指导方针。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号