...
首页> 外文期刊>Frontiers in Human Neuroscience >Can the Recording of Motor Potentials Evoked by Transcranial Magnetic Stimulation Be Optimized?
【24h】

Can the Recording of Motor Potentials Evoked by Transcranial Magnetic Stimulation Be Optimized?

机译:经颅磁刺激诱发的运动电位记录可以优化吗?

获取原文

摘要

Introduction Transcranial magnetic stimulation (TMS) combined with surface electromyography (sEMG) has been for a long time an important non-invasive tool to investigate and better understand how brain controls the skeletal muscles. However, the present literature still lacks standardization protocols and comprehensive discussions about possible influences of sEMG electrode placement and montages on TMS evoked responses. With the advent of TMS by Barker et al. ( 1985 ), several advances have been made in basic and clinical neurophysiology (Rossini et al., 2015 ). In TMS, a high-intensity brief magnetic pulse applied with a coil over the subject's scalp, induces an electric field across the cortical tissue that depolarizes a group of neuronal pools. Therefore, if a single pulse is applied over a particular spot of the primary motor cortex (M1), the generated action potentials travel down the corticospinal tract reaching a specific muscle or group of muscles, which in turn can be achieved by recording their myoelectric activities. Such myoelectric activity may contain potentials varying from a few micro to millivolts and are recognized as motor evoked potentials (MEPs). MEPs can be recorded by means of sEMG with different electrode types, e.g. surface or indwelling, and montages, e.g. mono and bipolar. Most TMS applications take advantage of MEP amplitude and latency to evaluate the integrity and/or excitability of the motor corticospinal pathway to study normal and abnormal aspects of neurophysiology, including the pathophysiology of many neurological and motor disorders. Some may believe that differences in electrode arrangement for recording MEPs can offer a small impact in data quality; in this case he/she may be a victim of an ordinary pitfall. Thus, we may ask and discuss along this manuscript, what are the disadvantages and advantages of recording MEPs from different surface electrode montages? Do they provide a robust and similar comprehension of motor corticospinal excitability? The compound surface EMG signal Two basic mechanisms regulate muscle force generation from the motor units (MUs): spatial and temporal summation. Considering an increase in muscle force, spatial summation refers to the recruitment of MUs following the size principle (Henneman et al., 1965 ) while temporal summation accounts to an increase in the firing rate (De Luca and Erim, 1994 ). Moreover, muscle fibers that belong to a MU may be sparsely—or heterogeneously—clustered throughout the muscle volume (Bodine-Fowler et al., 1990 ). Consequently, MUs action potentials (MUAPs) recorded over the skin surface may not be uniformly distributed in space as muscle force varies (Merletti and Parker, 2004 ; Rosa et al., 2008 ; Garcia and Vieira, 2011 ; Hodson-Tole et al., 2013 ). Therefore, sEMG amplitude arising from the algebraic temporal and spatial summation of the action potentials that emanate from the underlying recruited MUs may exhibit different spatial distributions throughout the muscle extent. Previous studies based on mathematical modeling reinforce the need of always considering the inhomogeneous nature of a muscle due to its architecture and MU recruitment when considering the sEMG signal properties (Mesin and Farina, 2005 ; Messaoudi and Bekka, 2015 ). Moreover, such properties have been better described in the last years in several superficial muscles with the advent of multi-electrode arrays for high-density sEMG (HD-sEMG) (Holtermann, 2008 ). For instance, different levels of myoelectric activity may be observed for a same contraction force depending on the site of electrode placement (Rojas-Martinez et al., 2012 ). In turn, different TMS pulse intensities may lead to distinct distributions of MEP in forearm muscles. Specifically, lower stimulation intensities seem to yield to MEPs spatial distribution like those observed in voluntary contractions (Van Elswijk et al., 2008 ). Altogether, these few studies exemplify the idea that even though recommendations were conceived to provide robust and representative electrode placement instructions, recording the myoelectric activity under distinct conditions may not be a straightforward task depending on the purpose of the investigation, especially for MEPs elicited with TMS. Guidelines for sEMG signal recording: do they fit with MEP acquisition? Among other methodological issues, there seemed to be lack of consensus regarding the sEMG acquisition and processing since few decades ago (see Zipp, 1982 ). Consequently, various European groups developed recommendations on how to apply the sEMG. The European concerted action named Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM), carried out between the years 1996 and 1999, provides very important guidelines concerning electrode size and placement (see details on http://www.seniam.org ). Thereafter, many authors started to follow those recommendations that allowed comparisons among different studies. SE
机译:简介经颅磁刺激(TMS)与表面肌电图(sEMG)的组合在很长一段时间以来一直是研究和更好地了解大脑如何控制骨骼肌的重要非侵入性工具。然而,目前的文献仍然缺乏标准化的协议和关于sEMG电极放置和蒙太奇对TMS诱发反应的可能影响的全面讨论。随着Barker等人提出的TMS, (1985年),在基本和临床神经生理学方面取得了一些进展(Rossini等,2015)。在TMS中,在受试者的头皮上施加线圈的高强度短暂电磁脉冲会在整个皮质组织中产生电场,从而使一组神经元池去极化。因此,如果在主运动皮层(M1)的特定位置上施加单个脉冲,则生成的动作电位沿皮质脊髓束向下传播,到达特定的肌肉或一组肌肉,这又可以通过记录其肌电活动来实现。这种肌电活动可能包含几微伏到几毫伏不等的电位,被认为是运动诱发电位(MEP)。可以通过具有不同电极类型的sEMG记录MEP,例如表面或内部,以及蒙太奇,例如单极和双极。大多数TMS应用程序利用MEP振幅和潜伏期来评估运动性皮质脊髓途径的完整性和/或兴奋性,以研究神经生理学的正常和异常方面,包括许多神经系统疾病和运动障碍的病理生理学。有些人可能认为,用于记录MEP的电极排列方式的不同会对数据质量产生很小的影响。在这种情况下,他/她可能是普通陷阱的受害者。因此,我们可能会沿着本手稿询问和讨论,记录来自不同表面电极蒙太奇的MEP的缺点和优点是什么?它们是否对运动性皮质脊髓兴奋性提供了强大而相似的理解?复合表面肌电信号两种基本机制调节运动单元(MU)产生的肌肉力:空间和时间求和。考虑到肌肉力量的增加,空间求和是指遵循大小原则的MU募集(Henneman等,1965),而时间求和则是发射率的增加(De Luca和Erim,1994)。此外,属于MU的肌肉纤维可能在整个肌肉体积中呈稀疏(或非均质)簇状(Bodine-Fowler等,1990)。因此,随着肌肉力量的变化,记录在皮肤表面的MUs动作电位(MUAPs)可能不会在空间中均匀分布(Merletti和Parker,2004; Rosa等,2008; Garcia和Vieira,2011; Hodson-Tole等。 ,2013年)。因此,由潜在募集的MU发出的动作电位的代数时间和空间总和产生的sEMG振幅可能在整个肌肉范围内表现出不同的空间分布。先前基于数学建模的研究强调了在考虑sEMG信号特性时始终要考虑肌肉的结构和MU募集的不均匀特性的必要性(Mesin和Farina,2005年; Messaoudi和Bekka,2015年)。此外,近年来,随着用于高密度sEMG(HD-sEMG)的多电极阵列的出现,在一些浅表肌肉中已经更好地描述了这些特性(Holtermann,2008年)。例如,根据电极放置的部位,对于相同的收缩力,可以观察到不同水平的肌电活动(Rojas-Martinez等,2012)。反过来,不同的TMS脉冲强度可能导致前臂肌肉中MEP的不同分布。具体而言,较低的刺激强度似乎会产生MEP的空间分布,就像在自愿收缩中观察到的那样(Van Elswijk等,2008)。总的来说,这几项研究例证了一个想法,即即使建议提供可靠且有代表性的电极放置说明,但根据研究目的,尤其是对于TMS诱发的MEP,在不同条件下记录肌电活动可能也不是一件容易的事。 。 sEMG信号记录指南:它们适合MEP采集吗?在其他方法论问题中,自几十年前以来,关于sEMG的获取和处理似乎缺乏共识(参见Zipp,1982)。因此,许多欧洲组织就如何应用sEMG提出了建议。在1996年至1999年之间进行的名为“用于肌肉无创评估的表面肌电图(SENIAM)”的欧洲一致行动,提供了有关电极尺寸和位置的非常重要的指导原则(请参见http://www.seniam.org上的详细信息)。 )。此后,许多作者开始遵循那些允许在不同研究之间进行比较的建议。东南

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号