首页> 外文期刊>Frontiers in Genetics >History, chance and selection during phenotypic and genomic experimental evolution: replaying the tape of life at different levels
【24h】

History, chance and selection during phenotypic and genomic experimental evolution: replaying the tape of life at different levels

机译:在表型和基因组实验进化过程中的历史,机会和选择:重现不同水平的生命

获取原文
           

摘要

Ever since Darwin, understanding evolutionary processes and patterns have been major scientific quests. In the Origin of Species , Darwin explained both adaptation and diversity, and most of his arguments were based on indirect evidence, including comparative approaches. These findings led Darwin to defend that evolution in nature is extremely slow and gradual, hardly being directly observable at the scale of a human generation. Artificial selection, in contrast, was used by Darwin to illustrate the efficacy of natural selection (Darwin, 1859 ). During the last decades, evolution has been observed in real time. This opened new research possibilities and gave rise to Experimental Evolution, a rapidly expanding field that covers many topics and organisms (Garland and Rose, 2009 ; Kawecki et al., 2012 ). The joint power of experimental evolution and recently developed genome-wide tools may now lead us a step further in understanding real-time evolutionary dynamics of populations, both at phenotypic and genomic levels (Baldwin-Brown et al., 2014 ; Schl?tterer et al., 2014 ). Our contribution to this special issue of Frontiers in Genetics focuses on the power of these approaches to assess the role of historical contingencies during adaptation to novel environments, a fundamental subject that has been neglected. Laboratory experimental evolution studies are powerful because we can follow evolutionary trajectories of independent replicates for one or more traits while controlling for all but the factors under study. For instance this tool is particularly suited to analyze temporal changes using ancestral populations as baselines, generate contrasting phenotypes by divergent selection, and test for predictability of evolution (Kawecki et al., 2012 ). With such approach, essential questions can be addressed: (1) What is the adaptive potential of populations to novel environments? (2) What is the role of selection and chance during adaptation? (3) What is the tempo and mode of evolution? (4) How constrained is evolution? With the recent advent of high throughput techniques in genome-wide analysis, also available for non-model organisms (Ellegren, 2014 ), the field of evolutionary biology is now addressing essential questions more thoroughly: (1) What is the genetic basis of adaptation? (2) Are there many genes of small effect or few genes of major effect involved? (3) What is the role of genetic drift vs . selection on candidate genes during local adaptation? (4) What is the mutation rate and how does it change during evolution? (5) Does genomic evolution mimic phenotypic evolution in timing and pattern? (Orr, 2005 ; Stapley et al., 2010 ). Until recently, only population genetics modeling and comparative analyses across populations addressed these questions. Both present strengths and limitations (Magalh?es and Matos, 2012 ). The combination of experimental evolution and genomic techniques allows unprecedented resolution to the evolutionary mechanisms underlying phenotypic and genomic change (Burke, 2012 ; Burke and Long, 2012 ; Dettman et al., 2012 ; Lobkovsky and Koonin, 2012 ; Barrick and Lenski, 2013 ; Baldwin-Brown et al., 2014 ; Schl?tterer et al., 2014 ). In particular, these approaches may help us disentangle the role of historical contingencies, the effect of chance events, and the power of selection during adaptation to novel environments. Selection, history and chance are not mutually exclusive. It is, thus, of utmost importance to define their relative roles in shaping evolution in general, and adaptation to novel environments in particular (Bedhomme et al., 2013 ). While selection is seen as a deterministic process leading to adaptation, both previous history and chance events are evolutionary contingencies that may lead to disparate, unpredictable results (Lenormand et al., 2009 ). The classic question of whether evolution is repeatable if we “replay” the tape of life (Gould, 1989 ) can now be more thoroughly addressed from phenotypes to genomes (Lobkovsky and Koonin, 2012 ). The relative role of chance and selection can be tackled by analyzing differences between populations that start from the same ancestral population, while evolving in a novel environment. If selection plays the most important role, it is expected that populations will evolve in parallel, both phenotypically and genotypically, with chance events (e.g., founder effects, genetic drift, and random mutations) having relatively reduced impact. Experimental evolution studies have shown abundant examples of parallel genomic evolution (Lobkovsky and Koonin, 2012 ; Stern, 2013 ), although this is not always the case (Arendt and Reznick, 2008 ; Elmer and Meyer, 2011 ). Conspicuous in their abundance are studies of parallel genomic evolution in asexual microorganisms (Tenaillon et al., 2012 ; Barrick and Lenski, 2013 ). In experiments starting from the same clone evolution depends on de novo mutations (due to a lack of standing genetic varia
机译:自达尔文以来,了解进化过程和模式一直是主要的科学探索。达尔文在《物种起源》中解释了适应性和多样性,他的大多数论点都是基于间接证据,包括比较方法。这些发现使达尔文辩护说,自然界的进化是极其缓慢和渐进的,在人类这一世代的规模上很难直接观察到。相反,达尔文使用人工选择来说明自然选择的功效(达尔文,1859年)。在过去的几十年中,实时观察到了进化。这开辟了新的研究可能性,并引发了实验进化,这是一个迅速扩展的领域,涵盖了许多主题和生物(Garland和Rose,2009; Kawecki等,2012)。实验进化和新近开发的全基因组工具的共同力量现在可能使我们进一步了解表型和基因组水平的种群实时进化动力学(Baldwin-Brown等,2014; Schl?tterer等)等人,2014年)。我们对这本《遗传学前沿》专刊的贡献集中在这些方法的力量上,以评估适应新环境时历史偶然性的作用,这是一个被忽略的基本主题。实验室实验进化研究之所以功能强大,是因为我们可以控制一个或多个特征的独立重复序列的进化轨迹,同时控制除研究因素以外的所有因素。例如,该工具特别适合于分析以祖先种群为基准的时间变化,通过发散选择生成对比表型以及测试进化的可预测性(Kawecki等,2012)。通过这种方法,可以解决一些基本问题:(1)人口对新环境的适应潜力是什么? (2)适应过程中选择和机会的作用是什么? (3)进化的节奏和方式是什么? (4)进化有多严格?随着高通量技术在全基因组分析中的兴起(也可用于非模式生物)(Ellegren,2014年),进化生物学领域现在正在更彻底地解决以下基本问题:(1)适应的遗传基础是什么? ? (2)是否涉及许多影响较小的基因或影响较小的基因? (3)遗传漂移vs的作用是什么。局部适应过程中候选基因的选择? (4)突变率是多少,在进化过程中会如何变化? (5)基因组进化是否在时间和模式上模仿表型进化? (Orr,2005; Stapley等,2010)。直到最近,只有跨群体的人口遗传学建模和比较分析才解决了这些问题。两者都具有优势和局限性(Magalh?es和Matos,2012年)。实验进化和基因组技术的结合为表型和基因组变化的进化机制提供了前所未有的解决方案(Burke,2012; Burke and Long,2012; Dettman et al。,2012; Lobkovsky and Koonin,2012; Barrick and Lenski,2013; Baldwin-Brown等,2014; Schl?tterer等,2014)。特别是,这些方法可以帮助我们弄清历史突发事件的作用,偶然事件的影响以及在适应新型环境期间进行选择的能力。选择,历史和机会并不互斥。因此,最重要的是定义它们在塑造进化过程中的相对作用,尤其是对新环境的适应性(Bedhomme等人,2013)。虽然选择被认为是导致适应的确定性过程,但以前的历史和偶然事件都是进化的偶然事件,可能导致完全不同的,不可预测的结果(Lenormand等,2009)。现在,可以更彻底地解决从表型到基因组的经典问题,即如果我们“重播”生命的繁衍,进化是否可重复(Gould,1989)(Lobkovsky和Koonin,2012)。机会和选择的相对作用可以通过分析在相同环境中进化而来的相同祖先人口之间的差异来解决。如果选择起着最重要的作用,则可以预期种群将在表型和基因型上并行发展,偶然事件(例如创始人效应,遗传漂移和随机突变)的影响相对减少。实验进化研究显示了平行基因组进化的丰富实例(Lobkovsky和Koonin,2012; Stern,2013),尽管并非总是如此(Arendt和Reznick,2008; Elmer和Meyer,2011)。关于无性微生物的平行基因组进化研究十分丰富(Tenaillon等,2012; Barrick和Lenski,2013)。在从相同克隆开始的实验中,进化依赖于从头突变(由于缺乏固定的遗传变异)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号