首页> 外文期刊>MBio >Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA
【24h】

Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA

机译:植物病原体中的红光和蓝光传感 Alternaria alternata 取决于植物色素和白领蛋白LreA。

获取原文
           

摘要

Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa , most light responses are triggered by blue light, whereas in A. nidulans , red light plays a dominant role. In Alternaria alternata , both blue and red light appear to be important. In A. alternata , photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling. ABSTRACT The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA , lreA , and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA ( c lock- c ontrolled g ene in Neurospora crassa and light-induced gene in Aspergillus nidulans ) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC ( bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors.
机译:光控制丝状真菌中的许多过程。在许多模型生物中对光调节的研究揭示了意想不到的复杂性。尽管用于光感测的分子成分似乎在真菌基因组中被广泛保存,但是调节电路和某些物种对特定波长的敏感性似乎有所不同。在N. crassa中,大多数光响应是由蓝光触发的,而在构巢曲霉中,红光起主要作用。在Alternaria alternata中,蓝光和红光都显得很重要。在交配农杆菌中,光感受器控制形态发生途径,活性氧的稳态和次级代谢产物的产生。另一方面,高渗透压感测需要FphA和LreA,表明光和应力信号之间存在复杂的串扰。摘要丝状真菌Alternaria alternata是食物和饲料的常见收获后污染物,有些菌株是植物病原体。交链孢霉的许多过程都是由光触发的。有趣的是,蓝光抑制了孢子形成,而红光则逆转了这种作用,表明光敏系统之间存在相互作用。基因组编码植物色素(FphA),白领1(WC-1)直系同源物(LreA),视蛋白(NopA)和隐色色素(CryA)作为推定的感光体。在这里,我们调查了FphA和LreA的作用以及与高渗透压甘油(HOG)丝裂原活化蛋白(MAP)激酶途径的相互作用。我们使用CRISPR-Cas9技术为fphA,lreA和hogA创建了功能缺失突变。已经在黑暗中的所有三个突变菌株的孢子形成减少,表明光感受器FphA和LreA的功能独立于光感知。分生孢子的发芽在红色,蓝色,绿色和远红色光下被延迟。我们发现ccgA的光诱导作用(神经孢菌中的锁定基因和构巢曲霉中的光诱导基因)和过氧化氢酶基因catA取决于FphA,LreA和HogA。 FerA(推定的铁螯合酶基因)和bliC(bli-3,受光调节,功能未知)的光诱导需要LreA和HogA,但不需要FphA。交替糖形成的蓝光和绿光刺激取决于LreA。由于过氧化氢酶和超氧化物歧化酶的上调,缺乏FphA或LreA导致对氧化应激的抵抗力增强。 FphA的光激活导致HogA磷酸化和核积累增加。我们的结果表明,发芽,孢子形成和次生代谢在互生曲霉中受光调节,而蓝光和红光光电传感器的作用则不同。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号