...
首页> 外文期刊>MBio >Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri
【24h】

Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri

机译:产甲烷古细菌中通过氢循环进行的能量守恒巴氏甲烷八叠球菌

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT Energy conservation via hydrogen cycling, which generates proton motive force by intracellular H_(2)production coupled to extracellular consumption, has been controversial since it was first proposed in 1981. It was hypothesized that the methanogenic archaeon Methanosarcina barkeri is capable of energy conservation via H_(2)cycling, based on genetic data that suggest that H_(2)is a preferred, but nonessential, intermediate in the electron transport chain of this organism. Here, we characterize a series of hydrogenase mutants to provide direct evidence of H_(2)cycling. M.?barkeri produces H_(2)during growth on methanol, a phenotype that is lost upon mutation of the cytoplasmic hydrogenase encoded by frhADGB , although low levels of H_(2), attributable to the Ech hydrogenase, accumulate during stationary phase. In contrast, mutations that conditionally inactivate the extracellular Vht hydrogenase are lethal when expression of the vhtGACD operon is repressed. Under these conditions, H_(2)accumulates, with concomitant cessation of methane production and subsequent cell lysis, suggesting that the inability to recapture extracellular H_(2)is responsible for the lethal phenotype. Consistent with this interpretation, double mutants that lack both Vht and Frh are viable. Thus, when intracellular hydrogen production is abrogated, loss of extracellular H_(2)consumption is no longer lethal. The common occurrence of both intracellular and extracellular hydrogenases in anaerobic microorganisms suggests that this unusual mechanism of energy conservation may be widespread in nature. IMPORTANCE ATP is required by all living organisms to facilitate essential endergonic reactions required for growth and maintenance. Although synthesis of ATP by substrate-level phosphorylation is widespread and significant, most ATP is made via the enzyme ATP synthase, which is energized by transmembrane chemiosmotic gradients. Therefore, establishing this gradient across the membrane is of central importance to sustaining life. Experimental validation of H_(2)cycling adds to a short list of mechanisms for generating a transmembrane electrochemical gradient that is likely to be widespread, especially among anaerobic microorganisms.
机译:摘要自1981年首次提出以来,通过氢循环产生的能量节约就一直存在争议,该氢循环是通过细胞内H_(2)的产生与细胞外消耗相结合而产生质子原动力的。它被认为是产甲烷的古细菌Methanosarcina barkeri能够通过基于遗传数据的H_(2)循环表明,H_(2)是该生物电子传输链中的首选但非必需的中间体。在这里,我们表征一系列的氢化酶突变体,以提供H_(2)循环的直接证据。尽管甲醇中低水平的H_(2)归因于Ech氢化酶,但其在甲醇的生长过程中会产生H_(2),该表型在frhADGB编码的细胞质氢化酶突变后会丢失,尽管在固定阶段会积聚低水平的H_(2)。相反,当抑制vhtGACD操纵子的表达时,有条件地使细胞外Vht氢化酶失活的突变是致命的。在这些条件下,H_(2)积累,伴随甲烷生成和随后的细胞裂解停止,这表明无法捕获细胞外H_(2)导致了致命的表型。与这种解释一致,缺乏Vht和Frh的双突变体是可行的。因此,当废除细胞内氢的产生时,细胞外H_(2)消耗的丧失不再是致命的。厌氧微生物中细胞内和细胞外加氢酶的普遍存在表明,这种不寻常的能量守恒机制可能在自然界中广泛存在。重要信息所有活生物体都需要ATP,以促进生长和维持所需的必要的性腺反应。尽管通过底物水平的磷酸化合成ATP是广泛而重要的,但大多数ATP是通过跨膜化学渗透梯度激发的ATP合酶生产的。因此,在整个膜上建立该梯度对于维持生命至关重要。 H_(2)循环的实验验证增加了用于生成跨膜电化学梯度的机制的简短列表,该机制可能很普遍,尤其是在厌氧微生物中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号