...
首页> 外文期刊>Frontiers in Genetics >Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites
【24h】

Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites

机译:酵母菌端粒DNA识别:ssDNA和dsDNA结合蛋白及其靶位点共同进化的潜在教训

获取原文
           

摘要

In principle, alterations in the telomere repeat sequence would be expected to disrupt the protective nucleoprotein complexes that confer stability to chromosome ends, and hence relatively rare events in evolution. Indeed, numerous organisms in diverse phyla share a canonical 6 bp telomere repeat unit (5′-TTAGGG-3′/5′-CCCTAA-3′), suggesting common descent from an ancestor that carries this particular repeat. All the more remarkable, then, are the extraordinarily divergent telomere sequences that populate the Saccharomycotina subphylum of budding yeast. These sequences are distinguished from the canonical telomere repeat in being long, occasionally degenerate, and frequently non-G/C-rich. Despite the divergent telomere repeat sequences, studies to date indicate that the same families of single-strand and double-strand telomere binding proteins (i.e., the Cdc13 and Rap1 families) are responsible for telomere protection in Saccharomycotina yeast. The recognition mechanisms of the protein family members therefore offer an informative paradigm for understanding the co-evolution of DNA-binding proteins and the cognate target sequences. Existing data suggest three potential, inter-related solutions to the DNA recognition problem: (i) duplication of the recognition protein and functional modification; (ii) combinatorial recognition of target site; and (iii) flexibility of the recognition surfaces of the DNA-binding proteins to adopt alternative conformations. Evidence in support of these solutions and the relevance of these solutions to other DNA-protein regulatory systems are discussed.
机译:原则上,预期端粒重复序列的改变会破坏保护性核蛋白复合物,从而赋予染色体末端以稳定性,因此在进化中相对罕见。确实,不同门中的许多生物共享一个典范的6 bp端粒重复单元(5'-TTAGGG-3'/ 5'-CCCTAA-3'),这表明携带该特定重复序列的祖先有普遍的后代。因此,更令人惊奇的是,在发芽酵母的糖酵母亚门中分布的端粒序列极为不同。这些序列与典型的端粒重复序列不同,它们的长度较长,偶而简并且通常不富含G / C。尽管端粒重复序列不同,但迄今为止的研究表明,相同的单链和双链端粒结合蛋白家族(即Cdc13和Rap1家族)对酿酒酵母中的端粒保护负责。因此,蛋白质家族成员的识别机制为理解DNA结合蛋白和同源靶序列的共同进化提供了有益的范例。现有数据提示了DNA识别问题的三种潜在的,相互关联的解决方案:(i)复制识别蛋白和功能修饰; (ii)对目标地点的组合识别; (iii)DNA结合蛋白的识别表面的灵活性以采用替代构象。讨论了支持这些解决方案的证据以及这些解决方案与其他DNA-蛋白质调控系统的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号