首页> 外文期刊>MBio >Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells
【24h】

Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells

机译:系留磁铁是趋磁性的关键: Magnetospirillum magneticum AMB-1的直接观察表明,MamK将磁小体细胞器平均分配给子细胞

获取原文
           

摘要

ABSTRACT Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images. Here, we conducted live-cell time-lapse fluorescence imaging analyses employing highly inclined and laminated optical sheet microscopy, and these methods enabled us to visualize detailed dynamic movement of magnetosomes in growing cells during the entire cell cycle with high-temporal resolution and a high signaloise ratio. We found that the MamK cytoskeleton anchors magnetosomes through a mechanism that requires MamK-ATPase activity throughout the cell cycle to prevent simple diffusion of magnetosomes within the cell. We concluded that the static chain-like arrangement of the magnetosomes is required to precisely and consistently segregate the magnetosomes to daughter cells. Thus, the daughter cells inherit a functional magnetic sensor that mediates magneto-reception. IMPORTANCE Half a century ago, bacterial cells were considered a simple “bag of enzymes”; only recently have they been shown to comprise ordered complexes of macromolecular structures, such as bacterial organelles and cytoskeletons, similar to their eukaryotic counterparts. In eukaryotic cells, the positioning of organelles is regulated by cytoskeletal elements. However, the role of cytoskeletal elements in the positioning of bacterial organelles, such as magnetosomes, remains unclear. Magnetosomes are associated with cytoskeletal filaments that consist of the actin-like protein MamK. In this study, we focused on how the MamK cytoskeleton regulates the dynamic movement of magnetosome organelles in living magnetotactic bacterial cells. Here, we used fluorescence imaging to visualize the dynamics of magnetosomes throughout the cell cycle in living magnetotactic bacterial cells to understand how they use the actin-like cytoskeleton to maintain and to make functional their nano-sized magnetic organelles.
机译:摘要趋磁细菌是一组独特的细菌,可以合成称为磁小体的磁性细胞器,它们可用于协助特定类型的细菌运动(称为磁气逸)中的磁导航。由肌动蛋白样蛋白MamK组成的细胞骨架丝与磁小体链相关。以前,MamK的功能被认为是定位磁小体细胞器。这是基于通过电子显微镜静止图像的观察结果提出的。在这里,我们使用高度倾斜的层压光学片显微镜进行了活细胞延时荧光成像分析,这些方法使我们能够以较高的时间分辨率和高分辨率可视化整个细胞周期中生长细胞中磁小体的详细动态运动。信噪比。我们发现,MamK细胞骨架通过要求在整个细胞周期内具有MamK-ATPase活性的机制来锚定磁小体,以防止磁小体在细胞内的简单扩散。我们得出的结论是,磁小体的静态链状排列需要精确且始终如一地将磁小体隔离到子细胞中。因此,子细胞继承了介导磁接收的功能性磁传感器。重要半个世纪以前,细菌细胞被认为是一个简单的“酶袋”。直到最近才证明它们包含大分子结构的有序复合物,例如细菌细胞器和细胞骨架,类似于它们的真核对应物。在真核细胞中,细胞器的位置由细胞骨架元件调节。然而,尚不清楚细胞骨架元件在细菌细胞器如磁小体的定位中的作用。磁小体与由肌动蛋白样蛋白MamK组成的细胞骨架丝相关。在这项研究中,我们专注于MamK细胞骨架如何调节趋磁细菌细胞中磁小体细胞器的动态运动。在这里,我们使用荧光成像技术来观察磁性趋化细菌细胞在整个细胞周期中的磁小体动力学,以了解它们如何使用肌动蛋白样细胞骨架来维持其纳米尺寸的磁性细胞器并使它们发挥功能。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号