...
首页> 外文期刊>Frontiers in Energy Research >Process Optimization of Steam Explosion Parameters on Multiple Lignocellulosic Biomass Using Taguchi Methoda??A Critical Appraisal
【24h】

Process Optimization of Steam Explosion Parameters on Multiple Lignocellulosic Biomass Using Taguchi Methoda??A Critical Appraisal

机译:田口法对多种木质纤维素生物质蒸汽爆炸参数的工艺优化-关键评价

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Xylitol is a low calorie sweetener that can be produced through a bioconversion approach from lignocellulosic biomass that requires pretreatment prior to the bioconversion of xylose to xylitol. Steam explosion (SE) is an industrially scalable pretreatment (PT) process with the potential to liberate xylose monomers, however SE-PT has not been optimised for xylose release from multiple feedstock. The effect of pressure, substrate weight, phosphoric acid loading concentration and residence time on four feedstock (wheat straw (WS), corn stover (CS), Miscanthus (M), and willow (W)) for xylose release and minimal fermentation inhibitor productions (furfural and 5-hydroxymethylfurfural (HMF)) was investigated using the Taguchi methodology for design of experiment (DoE) with variation at four levels (44). An L16 orthogonal array design was utilised and all factors indicated influence on xylose release and inhibitor formation and the resulting xylose rich hydrolysate assessed for bioconversion to xylitol.. The L16 DoE gave hydrolysates containing 75-95% of xylose content in the original biomass, whilst retaining cellulose and lignin components in the fibre. The level of inhibitors were within boundary limits to enable microbial fermentation of the hydrolysates to xylitol. Fine tuning of the overall evaluation criteria (OEC) model imbibing 1.5 kg feedstock in 1.2% w/v orthophosphoric acid, 12 bar(g) and 6 minutes residence time resulted in 90% xylose recovery and production of 1000 L of wheat straw hydrolysate for bioconversion to xylitol. The advantages and limitations of the Taguchi OEC model and further improvements to this process are discussed in a biorefining context
机译:木糖醇是一种低卡路里的甜味剂,可以通过生物转化方法从木质纤维素生物质中生产,需要在木糖生物转化为木糖醇之前进行预处理。蒸汽爆炸(SE)是一种工业可扩展的预处理(PT)工艺,具有释放木糖单体的潜力,但是SE-PT尚未针对从多种原料中释放木糖进行优化。压力,底物重量,磷酸负载浓度和停留时间对四种原料(木糖(WS),玉米秸秆(CS),芒草(M)和柳树(W))释放木糖和最小化发酵抑制剂产量的影响(田糠醛和5-羟甲基糠醛(HMF))使用田口方法进行了实验设计(DoE),研究了四个水平的差异(44)。利用L16正交阵列设计,所有因素均表明对木糖释放和抑制剂形成的影响,并对所得的富含木糖的水解产物进行了生物转化为木糖醇的评估。将纤维素和木质素成分保留在纤维中。抑制剂的含量在极限范围内,以使水解产物微生物发酵成木糖醇。精细调整总体评估标准(OEC)模型,将1.5 kg原料吸收到1.2%w / v正磷酸,12 bar(g)和6分钟的停留时间中,可回收90%的木糖,并生产> 1000 L的麦草水解产物生物转化为木糖醇。 Taguchi OEC模型的优点和局限性以及对该过程的进一步改进在生物精炼环境中进行了讨论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号