...
首页> 外文期刊>MBio >Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus
【24h】

Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus

机译:烟曲霉中的真菌异氰酸酯合酶和黄嘌呤素生物合成

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT Microbial secondary metabolites, including isocyanide moieties, have been extensively mined for their repertoire of bioactive properties. Although the first naturally occurring isocyanide (xanthocillin) was isolated from the fungus Penicillium notatum over half a century ago, the biosynthetic origins of fungal isocyanides remain unknown. Here we report the identification of a family of isocyanide synthases (ICSs) from the opportunistic human pathogen Aspergillus fumigatus . Comparative metabolomics of overexpression or knockout mutants of ICS candidate genes led to the discovery of a fungal biosynthetic gene cluster (BGC) that produces xanthocillin ( xan ). Detailed analysis of xanthocillin biosynthesis in A.?fumigatus revealed several previously undescribed compounds produced by the xan BGC, including two novel members of the melanocin family of compounds. We found both the xan BGC and a second ICS-containing cluster, named the copper-responsive metabolite ( crm ) BGC, to be transcriptionally responsive to external copper levels and further demonstrated that production of metabolites from the xan BGC is increased during copper starvation. The crm BGC includes a novel type of fungus-specific ICS-nonribosomal peptide synthase (NRPS) hybrid enzyme, CrmA. This family of ICS-NRPS hybrid enzymes is highly enriched in fungal pathogens of humans, insects, and plants. Phylogenetic assessment of all ICSs spanning the tree of life shows not only high prevalence throughout the fungal kingdom but also distribution in species not previously known to harbor BGCs, indicating an untapped resource of fungal secondary metabolism. IMPORTANCE Fungal ICSs are an untapped resource in fungal natural product research. Their isocyanide products have been implicated in plant and insect pathogenesis due to their ability to coordinate transition metals and disable host metalloenzymes. The discovery of a novel isocyanide-producing family of hybrid ICS-NRPS enzymes enriched in medically and agriculturally important fungal pathogens may reveal mechanisms underlying pathogenicity and afford opportunities to discover additional families of isocyanides. Furthermore, the identification of noncanonical ICS BGCs will enable refinement of BGC prediction algorithms to expand on the secondary metabolic potential of fungal and bacterial species. The identification of genes related to ICS BGCs in fungal species not previously known for secondary metabolite-producing capabilities (e.g., Saccharomyces spp.) contributes to our understanding of the evolution of BGC in fungi.
机译:摘要微生物次生代谢物,包括异氰化物部分,已被广泛挖掘,以体现其生物活性。尽管半个多世纪前从真菌青霉中分离出了第一种天然存在的异氰化物(黄嘌呤素),但真菌异氰化物的生物合成来源仍然未知。在这里,我们报告从机会性人类病原体烟曲霉中鉴定出一个异氰酸酯合酶(ICSs)家族。 ICS候选基因过表达或敲除突变体的比较代谢组学导致发现了产生黄嘌呤素(xan)的真菌生物合成基因簇(BGC)。烟曲霉中黄嘌呤素生物合成的详细分析揭示了xan BGC生产的几种以前未描述的化合物,包括黑素蛋白家族的两个新成员。我们发现xan BGC和第二个含ICS的簇,即铜响应性代谢物(crm)BGC,都对外部铜水平有转录响应,并进一步证明xan BGC的代谢产物在铜饥饿期间会增加。 crm BGC包括一种新型的真菌特异性ICS非核糖体肽合酶(NRPS)杂合酶CrmA。 ICS-NRPS杂合酶家族在人类,昆虫和植物的真菌病原体中高度富集。对跨越生命树的所有ICS进行的系统发育评估不仅显示出整个真菌界的高流行率,而且还表明了以前未知的具有BGC的物种中的分布情况,表明尚未开发的真菌二次代谢资源。重要事项真菌ICS是真菌天然产物研究中尚未开发的资源。它们的异氰化物产品具有协调过渡金属和禁用宿主金属酶的能力,因此已被认为与植物和昆虫的发病机理有关。新发现的富含异氰酸酯的杂化ICS-NRPS酶家族,富含医学和农业上重要的真菌病原体,可能揭示了潜在的致病机理,并为发现其他异氰酸酯家族提供了机会。此外,非经典ICS BGC的鉴定将使BGC预测算法的完善,以扩大真菌和细菌物种的次生代谢潜能。在真菌物种中与ICS BGC相关的基因的鉴定以前不具有次级代谢产物的生产能力(例如,酿酒酵母属),这有助于我们了解真菌中BGC的进化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号