...
首页> 外文期刊>MBio >Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design
【24h】

Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design

机译:病原真菌海藻糖6-磷酸合酶的结构和体内研究提供了其催化机理,生物学必要性和新型抗真菌药物设计潜力的见解

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes. IMPORTANCE Invasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in mammals, and thus, the two enzymes that carry out trehalose biosynthesis, namely, trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2), are prominent targets for antifungal intervention. Here, we report the first eukaryotic Tps1 structures from the pathogenic fungi Candida albicans and Aspergillus fumigatus in complex with substrates, substrate analogues, and inhibitors. These structures reveal key protein-substrate interactions, providing atomic-level scaffolds for structure-guided drug design of novel antifungals that target Tps1.
机译:摘要二糖海藻糖对于致病真菌在其人类宿主中的存活至关重要。海藻糖6-磷酸合酶(Tps1)催化真菌中海藻糖生物合成的第一步。在这里,我们报道与底物或底物类似物复合的真核Tps1s的第一个结构。来自白色念珠菌和烟曲霉的Tps1的总体结构基本相同,并且揭示了分别形成葡萄糖-6-磷酸和UDP-葡萄糖底物结合位点的N和C端Rossmann折叠结构域。这些具有底物或底物类似物的Tps1结构揭示了识别和催化过程中涉及的关键残基。这些关键残基的破坏严重损害了Tps1的酶活性。随后的细胞分析也突出了Tps1在耐热性,酵母菌丝过渡和生物膜发育中的酶功能。这些结果表明,Tps1酶功能对于真菌的应激反应和毒力至关重要。此外,与不可水解的抑制剂有效氧胺A配合使用的Tps1的结构可视化了过渡态,并支持内部归类的催化机制,该机制可推广至其他保留GT-B倍的糖基转移酶。总的来说,我们的结果描述了关键的Tps1-底物相互作用,揭示了这些真菌蛋白的酶促机理,并为目前和高亲和力配体-Tps1复合物的结构所支持和指导的高通量抑制剂筛选铺平了道路。重要信息侵袭性真菌病已成为主要威胁,每年导致全世界150万人死亡。通过增加对临床上所有主要类别的抗真菌药物的耐药性,使这一流行病进一步复杂化。海藻糖的生物合成对于真菌的应激反应和毒力至关重要。至关重要的是,这种生物合成途径在哺乳动物中不存在,因此,进行海藻糖生物合成的两种酶,即海藻糖6磷酸合酶(Tps1)和海藻糖6磷酸磷酸酶(Tps2),是抗真菌干预的主要目标。 。在这里,我们报道了病原真菌白色念珠菌和烟曲霉的第一个真核生物Tps1结构与底物,底物类似物和抑制剂的复合物。这些结构揭示了关键的蛋白质-底物相互作用,为靶向Tps1的新型抗真菌药物的结构指导药物设计提供了原子级支架。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号