首页> 外文期刊>Frontiers in Systems Neuroscience >Commentary: On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation
【24h】

Commentary: On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation

机译:评论:刺激持续时间对经颅交流电刺激后效的可能作用

获取原文
       

摘要

In their recent article, Strüber et al. ( 2015 ) demonstrate that 1s application of transcranial alternating current stimulation (tACS) do not lead to any significant changes in the phase and amplitude of the electroencephalogram (EEG) signal. Therefore, they concluded that it is too short to induce synaptic plasticity. This is a very important observation that sheds light on possible underlying mechanisms of tACS. Although the results clearly show the absence of certain specific tACS-induced electrophysiological after-effects when applied only for 1s, some additional considerations need to be made in order to fully interpret these null results as well as probe the mechanism of tACS at shorter timescales. An important question is whether at these smaller time scales, the lack of prolonged entrainment during the post stimulation session necessarily reflect a lack of tACS efficacy. Alternatively, these results might also suggest that for 1s stimulation paradigms, we are simply looking at the wrong electrophysiological measure. At these smaller time scales, changes in measures such as spike rate adaptation (Fernandez et al., 2011 ; Kar and Krekelberg, 2014 ), spike time precision (Reato et al., 2010 ), neurovascular coupling (Zheng et al., 2011 ; Kar and Wright, 2014 ) are likely to be more relevant for behavioral aftereffects. The EEG signal typically comprises of synchronized oscillations across the superficial cortex (for review, see Buzsáki et al., 2012 ). Hence it might be more sensitive to changes in entrainment whereas much less sensitive to these subtle effects (which might also still be behaviorally relevant). However, some of these changes might indeed be a result of changes in short-term synaptic plasticity (which is a very broad term). It must however be noted that the aforementioned mechanisms could also be a direct result of network entrainment during tACS but lack entrainment related features in the EEG measured at the scalp in the post tACS session. One way to test this hypothesis further, would be to use the method introduced by Helfrich et al. ( 2014 ) to remove the tACS-induced artifacts for the 1s tACS period, and estimate changes in EEG during stimulation. This would be very informative to test whether tACS applied at the individual alpha frequency (IAF) for 1s could entrain the underlying cortex at all. Then we would be able to say whether the lack of effect is despite similar entrainment during tACS. The effects of tACS on the underlying cortex often depends on the presence of an experimental task that actively recruits the underlying brain area or otherwise, produces a specific brain state. For instance, Kar and Krekelberg ( 2014 ) demonstrated, that tACS induced changes in human motion discrimination performance is only present when tACS was paired with the visual motion stimulus. Ten Hertz tACS applied for 4s reduced the after-effects of motion adaptation and the effects scaled with how much adaptation there was to begin with. Similarly, Feurra et al. ( 2013 ) also demonstrated the state dependent effects of tACS on the motor cortex. Given this brain state dependency of the tACS induced effects, it remains unclear whether the lack of tACS-induced aftereffect reported in the study could be due to an absence of an appropriate brain state in the stimulated area. In this regard, it might be interesting to probe the brain areas while doing a relevant task. Choosing the stimulation intensity is also a key consideration during tACS studies (Groppa et al., 2010 ). However, it is crucial to consider the confounding aspects of tACS-induced phosphenes (Kar and Krekelberg, 2012 ) and tactile sensations (Feurra et al., 2011 ). I argue that lower stimulation amplitudes might not necessarily control for phosphenes and these low amplitudes might fail to induce the desired cortical effects (entrainment). First, the accuracy of the threshold values are highly depended on the sensitivity of the adaptive method used to estimate them. In addition, we can never rule out the effects of subthreshold retinal stimulation during tACS. Hence, it is important to consider other strategies to design control experiments to rule out general effects of tACS (phosphenes, tactile sensations, reduced/increased arousal etc.). Some recent studies have used brain laterization to test their hypotheses (Kar and Krekelberg, 2014 ). But, given the large current spread during tACS and asymmetries between the two hemispheres of the human brain, this is not always feasible. Therefore, control strategies remain a challenging issue for tACS experiments. The Strüber et al. ( 2015 ) study provides a lead into the hypothesis that tACS mechanisms vary according to stimulation duration. This can be addressed in future experiments, where the stimulation duration can be varied as an independent variable to systematically map out its relationship with the boost in entrainment, changes in coherence and other short-term plasticity related ch
机译:在最近的文章中,Strüber等人。 (2015)证明经颅交流电刺激(tACS)的应用并不会导致脑电图(EEG)信号的相位和幅度发生任何重大变化。因此,他们得出结论,诱导突触可塑性太短。这是一个非常重要的发现,阐明了tACS可能的潜在机制。尽管结果清楚地表明仅应用1s时,没有某些特定的tACS诱导的电生理后效应,但仍需要进行一些其他考虑,以便完全解释这些无效结果并在更短的时间范围内探究tACS的机制。一个重要的问题是,在这些较小的时间范围内,刺激后训练期间是否缺乏长时间的夹带必然反映出tACS功效的不足。另外,这些结果也可能暗示对于1s刺激范例,我们只是在寻找错误的电生理指标。在这些较小的时间尺度上,措施的变化,例如峰值速率适应(Fernandez等,2011; Kar和Krekelberg,2014),峰值时间精度(Reato等,2010),神经血管耦合(Zheng等,2011)。 ; Kar和Wright,2014年)可能与行为后效应更相关。 EEG信号通常包括跨皮层的同步振荡(有关综述,请参见Buzsáki等人,2012年)。因此,它可能对夹带的变化更敏感,而对这些细微的影响(可能仍然与行为相关)的敏感度要低得多。但是,其中一些变化确实可能是短期突触可塑性(这是一个非常广泛的术语)变化的结果。但是,必须指出的是,上述机制也可能是tACS期间网络夹带的直接结果,但在tACS会话后头皮上所测量的EEG中缺少与夹带相关的特征。进一步检验该假设的一种方法是使用Helfrich等人介绍的方法。 (2014)去除tACS诱导的1s tACS期间的假象,并估计刺激期间脑电图的变化。这对于测试以单独的alpha频率(IAF)应用1秒钟的tACS是否可以完全带走底层皮质很有帮助。然后,我们可以说出尽管在tACS期间有类似的夹带,但缺乏效果是否仍然存在。 tACS对基础皮层的影响通常取决于实验任务的存在,该实验任务会主动募集基础脑区域,否则会产生特定的大脑状态。例如,Kar and Krekelberg(2014)证明,只有当tACS与视觉运动刺激配对时,tACS才会引起人类运动识别性能的变化。 10赫兹tACS的应用持续了4秒钟,减少了运动适应的后效应,并且该效应随开始的适应程度成比例增加。同样,Feurra等。 (2013)还证明了tACS对运动皮层的状态依赖性影响。考虑到这种tACS诱导作用的脑状态依赖性,尚不清楚研究中报告的tACS诱导后效应的缺乏是否可能是由于受刺激区域缺乏合适的脑状态所致。在这方面,在执行相关任务时探查大脑区域可能会很有趣。在tACS研究期间,选择刺激强度也是一个关键考虑因素(Groppa等,2010)。然而,至关重要的是要考虑到tACS诱导的膦(Kar和Krekelberg,2012)和触感(Feurra等,2011)的混杂方面。我认为较低的刺激幅度不一定能控制磷,这些较低的幅度可能无法诱发所需的皮层效应(夹带)。首先,阈值的准确性高度依赖于用于估计阈值的自适应方法的灵敏度。此外,我们永远不能排除在tACS期间阈下视网膜刺激的影响。因此,重要的是要考虑设计控制实验的其他策略,以排除tACS的一般影响(磷,触觉,唤醒的减少/增加等)。最近的一些研究使用脑迟发化来检验他们的假设(Kar和Krekelberg,2014年)。但是,考虑到tACS期间的大电流扩散以及人脑两个半球之间的不对称性,这并不总是可行的。因此,控制策略对于tACS实验仍然是一个具有挑战性的问题。 Strüber等。 (2015)研究提供了一个假设,即tACS机制根据刺激持续时间而变化的假说。这可以在未来的实验中得到解决,在该实验中,刺激持续时间可以作为一个独立变量进行变化,以系统地绘制出其与夹带度的提高,连贯性的变化以及其他与短期可塑性相关的变化的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号