首页> 外文期刊>Frontiers in Pharmacology >In Silico Assessment of Efficacy and Safety of I Kur Inhibitors in Chronic Atrial Fibrillation: Role of Kinetics and State-Dependence of Drug Binding
【24h】

In Silico Assessment of Efficacy and Safety of I Kur Inhibitors in Chronic Atrial Fibrillation: Role of Kinetics and State-Dependence of Drug Binding

机译: In silico 评估I Kur 抑制剂在慢性心房颤动中的功效和安全性:动力学作用和药物结合的状态依赖性

获取原文
       

摘要

Current pharmacological therapy against atrial fibrillation (AF), the most common cardiac arrhythmia, is limited by moderate efficacy and adverse side effects including ventricular proarrhythmia and organ toxicity. One way to circumvent the former is to target ion channels that are predominantly expressed in atria vs. ventricles, such as K_(V)1.5, carrying the ultra-rapid delayed-rectifier K~(+)current (I_(Kur)). Recently, we used an in silico strategy to define optimal K_(V)1.5-targeting drug characteristics, including kinetics and state-dependent binding, that maximize AF-selectivity in human atrial cardiomyocytes in normal sinus rhythm (nSR). However, because of evidence for I_(Kur)being strongly diminished in long-standing persistent (chronic) AF (cAF), the therapeutic potential of drugs targeting I_(Kur)may be limited in cAF patients. Here, we sought to simulate the efficacy (and safety) of I_(Kur)inhibitors in cAF conditions. To this end, we utilized sensitivity analysis of our human atrial cardiomyocyte model to assess the importance of I_(Kur)for atrial cardiomyocyte electrophysiological properties, simulated hundreds of theoretical drugs to reveal those exhibiting anti-AF selectivity, and compared the results obtained in cAF with those in nSR. We found that despite being downregulated, I_(Kur)contributes more prominently to action potential (AP) and effective refractory period (ERP) duration in cAF vs. nSR, with ideal drugs improving atrial electrophysiology (e.g., ERP prolongation) more in cAF than in nSR. Notably, the trajectory of the AP during cAF is such that more I_(Kur)is available during the more depolarized plateau potential. Furthermore, I_(Kur)block in cAF has less cardiotoxic effects (e.g., AP duration not exceeding nSR values) and can increase Ca~(2+)transient amplitude thereby enhancing atrial contractility. We propose that in silico strategies such as that presented here should be combined with in vitro and in vivo assays to validate model predictions and facilitate the ongoing search for novel agents against AF.
机译:当前针对心房颤动(AF)的最常见心律失常药物治疗受到中等疗效和不良副作用(包括室性心律失常和器官毒性)的限制。规避前者的一种方法是将主要在心房和心室中表达的离子通道作为靶标,例如带有超快速延迟整流器K〜(+)电流(I_(Kur))的K_(V)1.5。最近,我们使用了计算机模拟策略来定义最佳K_(V)1.5靶向药物特性,包括动力学和状态依赖性结合,这些特性可在正常窦性心律(nSR)下最大化人心房心肌细胞的AF选择性。但是,由于有证据表明在长期持续性(慢性)AF(cAF)中I_(Kur)会大大降低,因此针对I_(Kur)的药物在cAF患者中的治疗潜力可能会受到限制。在这里,我们试图模拟I_(Kur)抑制剂在cAF条件下的功效(和安全性)。为此,我们利用人类心房心肌细胞模型的敏感性分析来评估I_(Kur)对心房心肌细胞电生理特性的重要性,模拟了数百种理论药物以揭示具有抗AF选择性的药物,并比较了在cAF中获得的结果与那些在nSR中的人。我们发现,尽管C_vs与nSR相比,I_(Kur)对动作电位(AP)和有效不应期(ERP)持续时间的贡献更为显着,但理想药物在cAF中的改善心房电生理(例如ERP延长)的作用比在nSR中。值得注意的是,在cAF期间AP的轨迹使得在更去极化的高原电位期间有更多的I_(Kur)可用。此外,cAF中的I_(Kur)阻断剂具有较小的心脏毒性作用(例如,AP持续时间不超过nSR值),并且可以增加Ca〜(2+)瞬变幅度,从而增强心房收缩性。我们建议将此处提出的计算机模拟策略与体外和体内测定方法相结合,以验证模型预测并促进正在进行的抗AF新型药物的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号