...
首页> 外文期刊>Frontiers in Neuroscience >Endocannabinoid Mediates Excitatory Synaptic Function of β-Neurexins. Commentary: β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling
【24h】

Endocannabinoid Mediates Excitatory Synaptic Function of β-Neurexins. Commentary: β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling

机译:内源性大麻素介导β-神经毒素的兴奋性突触功能。评论:β-神经毒素通过调节突触内源性大麻素信号传导来控制神经回路。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Introduction Synaptic cell-adhesion molecules and their interactions with other molecular pathways affect both synapse formation and its function (Varoqueaux et al., 2006 ; Sudhof, 2008 ; Bemben et al., 2015a ). Neurexins are presynaptic cell-adhesion molecules that interact with neuroligins and other postsynaptic partners. Neurexins are encoded by three genes, each of which encodes a long and short isoform, termed α- and β-neurexins, respectively (Sudhof, 2008 ). Interestingly, despite studies linking neurexins to autism and other neuropsychiatric disorders (Leone et al., 2010 ; Rabaneda et al., 2014 ), the precise cellular mechanisms underlying the role of neurexins in cognition remain poorly understood.Since most biochemical studies of neurexins have focused on β-neurexins, investigating the synaptic actions of β-neurexins is particularly imperative. In their timely Cell article, Anderson et al. reported that β-neurexins selectively modulate synaptic strength at excitatory synapses by regulating postsynaptic endocannabinoid synthesis, describing an unexpected trans-synaptic mechanism for β-neurexins to control neural circuits via endocannabinoid signaling (Anderson et al., 2015 ; Summarized in Figure 1A ). Figure 1 Transsynaptic regulation of endocannabinoid signaling by β-neurexins and its implications in synaptic plasticity and diseases. (A) Regulation of excitatory synaptic strength by β-neurexins via endocannabinoid system. Anderson et al. demonstrated that presynaptic β-neurexins regulate endocannabinoid signaling by controlling postsynaptic endocannabinoid 2-AG synthesis. When β –neurexins are removed, 2-AG synthesis is disinhibited, presynaptic CB1Rs are activated, and synaptic strength is decreased (Anderson et al., 2015 ). In addition, the AC-PKA dependent LTP in burst-firing neurons is blocked, which may account for the impaired contextual memory in hippocampal CA1 β-neurexin knockout mice. β-neurexins act as a brake on endocannabinoid signaling possibly via transsynaptic interaction with postsynaptic neuroligin isoforms that exclusively bind to β-neurexins, but not a-neurexins (Anderson et al., 2015 ). β-neurexins might downregulate tonic endocannabinoid signaling through mGluR1/5 or M1/M3 receptors since activation of those GPCRs is known to trigger 2-AG production via PLC pathway (Varma et al., 2001 ; Chevaleyre et al., 2006 ; Heifets and Castillo, 2009 ; Kano et al., 2009 ; Castillo et al., 2012 ; Rinaldo and Hansel, 2013 ; Martin et al., 2015 ). This regulation might also involve VGCCs, NMDARs, or AMPARs as Ca~(2+)influx through these channels could facilitate PLC-DAGL mediated 2-AG production (Ohno-Shosaku et al., 2005 ; Castillo et al., 2012 ). The exact postsynaptic partners of β-neurexins in this process await to be identified. (B) The regulation of endocannabinoid signaling by β-neurexins supports neurexinseuroligins-endocannabinoid signaling as a common pathomechanism in cognitive disorders (Krueger and Brose, 2013 ; Anderson et al., 2015 ). Abnormalities in this signaling pathway could disrupt synapses and neural circuits, and contribute to neurological and psychiatric diseases (Chubykin et al., 2005 ; Tabuchi et al., 2007 ; Katona and Freund, 2008 ; Sudhof, 2008 ; Gogolla et al., 2009 ; Bot et al., 2011 ; Etherton et al., 2011 ; Foldy et al., 2013 ; Singh and Eroglu, 2013 ; Rothwell et al., 2014 ; Sindi et al., 2014 ; Aoto et al., 2015 ; Bedse et al., 2015 ; Born et al., 2015 ; Di Marzo et al., 2015 ; Parsons and Hurd, 2015 ; Wang and Doering, 2015 ; Wang et al., 2015 ; Bemben et al., 2015b ; Chanda et al., 2016 ). Abbreviations: 2-AG, 2-arachidonoyl-sn-glycerol; AC, adenylyl cyclase; AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CB1R, cannabinoid receptor 1; DAG, diacylglycerol; DAGL, diacylglycerol lipase; LTP, long-term potentiation; M1/3R, muscarinic acetylcholine receptor 1/3; mGluR, metabotropic glutamate receptor; NMDAR, N-methyl-D-aspartate receptor; PIP2, phosphatidylinositol 4, 5-bisphosphate; PKA, protein kinase A; PLC, phospholipase C; VGCC, voltage-gated Ca~(2+)channels. β-Neurexins regulate excitatory neurotransmission via endocannabinoid signaling Functional study of neurexins represents a major technical challenge due to their diversity and complexity. To study the specific role of β-neurexins, Anderson et al. generated conditional knockout mice of all β-neurexin genes. Using electrophysiological and pharmacological approaches, the authors elegantly analyzed neurotransmission and synaptic strength in preparations of cultured cortical neurons and acute subiculum slices from those β-neurexin knockout mice (Anderson et al., 2015 ).Can β-neurexins be specifically involved in excitatory or inhibitory neurotransmission? In cultured cortical neurons, Anderson et al. found that β-neurexin knockout decreased the excitatory synapse parameters including AMPA receptor- and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs), release probab
机译:简介突触细胞粘附分子及其与其他分子途径的相互作用会影响突触的形成及其功能(Varoqueaux等,2006; Sudhof,2008; Bemben等,2015a)。神经毒素是与神经胶蛋白和其他突触后伴侣相互作用的突触前细胞粘附分子。神经毒素由三个基因编码,每个基因分别编码长和短同工型,分别称为α-和β-神经毒素(Sudhof,2008)。有趣的是,尽管有研究将神经毒素与自闭症和其他神经精神疾病联系起来(Leone等,2010; Rabaneda等,2014),但神经毒素在认知中的作用的确切细胞机制仍知之甚少。重点研究β-神经毒素,研究β-神经毒素的突触作用尤为重要。在他们及时的Cell文章中,Anderson等人。报道称,β-神经毒素通过调节突触后内源性大麻素的合成选择性地调节兴奋性突触的突触强度,描述了β-神经毒素通过内源性大麻素信号传导控制神经回路的意想不到的跨突触机制(Anderson等人,2015年;总结于图1A中)。图1:β-神经毒素对内源性大麻素信号的突触调节及其对突触可塑性和疾病的影响。 (A)通过内源性大麻素系统通过β-神经毒素调节兴奋性突触强度。安德森等。证明突触前的β-神经毒素通过控制突触后内源性大麻素2-AG的合成来调节内源性大麻素的信号传导。当β-神经毒素被去除后,2-AG合成被抑制,突触前CB1R被激活,突触强度降低(Anderson等,2015)。此外,爆发性神经元中AC-PKA依赖性LTP被阻断,这可能是海马CA1β-神经毒素基因敲除小鼠的上下文记忆受损的原因。 β-神经毒素可能通过与仅与β-神经毒素结合但不与α-神经毒素结合的突触后神经木质素同工型的突触相互作用而对内源性大麻素信号产生制动作用(Anderson等,2015)。 β-神经毒素可能通过mGluR1 / 5或M1 / M3受体下调补强内源性大麻素信号,因为已知这些GPCR的激活可通过PLC途径触发2-AG的产生(Varma等,2001; Chevaleyre等,2006; Heifets和Castillo,2009; Kano等,2009; Castillo等,2012; Rinaldo和Hansel,2013; Martin等,2015)。该调节可能还涉及VGCC,NMDAR或AMPAR,因为通过这些通道的Ca〜(2+)流入可以促进PLC-DAGL介导的2-AG产生(Ohno-Shosaku等,2005; Castillo等,2012)。 β-神经毒素在此过程中的确切突触后伙伴有待鉴定。 (B)β-神经毒素对内源性大麻素信号的调节支持神经素/神经营养素-内源性大麻素信号传导是认知障碍的常见发病机制(Krueger and Brose,2013; Anderson et al。,2015)。该信号传导途径的异常可能破坏突触和神经回路,并导致神经系统疾病和精神疾病(Chubykin等,2005; Tabuchi等,2007; Katona和Freund,2008; Sudhof,2008; Gogolla等,2009)。 ; Bot等人,2011; Etherton等人,2011; Foldy等人,2013; Singh和Eroglu,2013; Rothwell等人,2014; Sindi等人,2014; Aoto等人,2015; Bedse等人,2015年; Born等人,2015年; Di Marzo等人,2015年; Parsons和Hurd,2015年; Wang和Doering,2015年; Wang等人,2015年; Bemben等人,2015b; Chanda等人。,2016)。缩写:2-AG,2-花生四烯酰基-sn-甘油; AC,腺苷酸环化酶; AMPAR,α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体; CB1R,大麻素受体1; DAG,二酰基甘油; DAGL,二酰基甘油脂肪酶; LTP,长期增强; M1 / 3R,毒蕈碱乙酰胆碱受体1/3; mGluR,代谢型谷氨酸受体; NMDAR,N-甲基-D-天冬氨酸受体; PIP2,磷脂酰肌醇4,5-双磷酸酯; PKA,蛋白激酶A; PLC,磷脂酶C; VGCC,电压门控Ca〜(2+)通道。 β-神经毒素通过内源性大麻素信号传导调节兴奋性神经传递由于其多样性和复杂性,神经毒素的功能研究代表了一项重大技术挑战。为了研究β-神经毒素的特定作用,Anderson等。产生所有β-神经毒素基因的条件敲除小鼠。作者使用电生理学和药理学方法对来自β-神经毒素敲除小鼠的培养的皮层神经元和急性亚核切片的制剂中的神经传递和突触强度进行了优雅的分析(Anderson等人,2015年)。抑制性神经传递?在培养的皮质神经元中,Anderson等。发现β-神经毒素敲除降低了兴奋性突触参数,包括AMPA受体和NMDA受体介导的兴奋性突触后电流(EPSC),释放probab

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号