首页> 外文期刊>Frontiers in Neuroscience >Tyrosine as a Mechanistic-Based Biomarker for Brain Glycogen Decrease and Supercompensation With Endurance Exercise in Rats: A Metabolomics Study of Plasma
【24h】

Tyrosine as a Mechanistic-Based Biomarker for Brain Glycogen Decrease and Supercompensation With Endurance Exercise in Rats: A Metabolomics Study of Plasma

机译:酪氨酸作为一种基于机理的生物标记物,用于大鼠耐力运动中脑糖原的减少和超补偿:血浆的代谢组学研究

获取原文
获取外文期刊封面目录资料

摘要

Brain glycogen, localized in astrocytes, produces lactate as an energy source and/or a signal factor to serve neuronal functions involved in memory formation and exercise endurance. In rodents, 4 weeks of chronic moderate exercise-enhancing endurance and cognition increases brain glycogen in the hippocampus and cortex, which is an adaption of brain metabolism achieved through exercise. Although this brain adaptation is likely induced due to the accumulation of acute endurance exercise–induced brain glycogen supercompensation, its molecular mechanisms and biomarkers are unidentified. Since noradrenaline synthesized from blood-borne tyrosine activates not only glycogenolysis but also glycogenesis in astrocytes, we hypothesized that blood tyrosine is a mechanistic-based biomarker of acute exercise–induced brain glycogen supercompensation. To test this hypothesis, we used a rat model of endurance exercise, a microwave irradiation for accurate detection of glycogen in the brain (the cortex, hippocampus, and hypothalamus), and capillary electrophoresis mass spectrometry–based metabolomics to observe the comprehensive metabolic profile of the blood. Endurance exercise induced fatigue factors such as a decrease in blood glucose, an increase in blood lactate, and the depletion of muscle glycogen, but those parameters recovered to basal levels within 6 h after exercise. Brain glycogen decreased during endurance exercise and showed supercompensation within 6 h after exercise. Metabolomics detected 186 metabolites in the plasma, and 110 metabolites changed significantly during and following exhaustive exercise. Brain glycogen levels correlated negatively with plasma glycogenic amino acids (serine, proline, threonine, glutamate, methionine, tyrosine, and tryptophan) ( r & ?0.9). This is the first study to produce a broad picture of plasma metabolite changes due to endurance exercise–induced brain glycogen supercompensation. Our findings suggest that plasma glycogenic amino acids are sensitive indicators of brain glycogen levels in endurance exercise. In particular, plasma tyrosine as a precursor of brain noradrenaline might be a valuable mechanistic-based biomarker to predict brain glycogen dynamics in endurance exercise.
机译:位于星形胶质细胞中的脑糖原产生乳酸作为能量来源和/或信号因子,以服务于记忆形成和运动耐力中涉及的神经元功能。在啮齿动物中,为期4周的长期中度运动增强耐力和认知能力会增加海马体和皮层的脑糖原,这是通过运动实现的脑代谢的一种适应。尽管可能由于急性耐力运动引起的脑糖原超补偿的积累而诱发了这种大脑适应性,但其分子机制和生物标志物尚不清楚。由于从血源性酪氨酸合成的去甲肾上腺素不仅激活糖原分解作用,而且还激活星形胶质细胞的糖原生成,因此我们假设血液酪氨酸是急性运动诱发的脑糖原超补偿的一种基于机械的生物标记。为了验证这一假设,我们使用了耐力运动的大鼠模型,微波辐射来准确检测大脑(皮层,海马和下丘脑)的糖原,并使用基于毛细管电泳质谱的代谢组学来观察血液。耐力运动会引起疲劳因素,例如血糖降低,血乳​​酸增加和肌肉糖原消耗,但这些参数在运动后6小时内恢复至基础水平。耐力运动期间脑糖原减少,运动后6小时内显示出超补偿。代谢组学检测到血浆中的186种代谢物,并且在力竭运动期间和之后,110种代谢物发生了显着变化。脑糖原水平与血浆糖原氨基酸(丝氨酸,脯氨酸,苏氨酸,谷氨酸,蛋氨酸,酪氨酸和色氨酸)负相关(r <≤0.9)。这是第一项关于耐力运动引起的脑糖原超补偿的血浆代谢产物变化的广泛研究。我们的发现表明,血浆糖原氨基酸是耐力运动中脑糖原水平的敏感指标。尤其是,血浆酪氨酸作为脑部去甲肾上腺素的前体可能是预测耐力运动中脑糖原动力学的有价值的基于机械的生物标记。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号