...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture
【24h】

Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture

机译:巨噬细胞驱动的生物材料降解取决于支架微体系结构

获取原文

摘要

In situ tissue engineering is a technology in which non-cellular biomaterial scaffolds are implanted in order to induce local regeneration of replaced or damaged tissues. Degradable synthetic electrospun scaffolds are a versatile and promising class of biomaterials for various in situ tissue engineering applications, such as cardiovascular replacements. Functional in situ tissue regeneration depends on the balance between endogenous neo-tissue formation and scaffold degradation. Both these processes are driven by macrophages. Upon invasion into a scaffold, macrophages secrete reactive oxygen species (ROS) and hydrolytic enzymes, contributing to oxidative and enzymatic biomaterial degradation, respectively. This study aims to elucidate the effect of scaffold microarchitecture, i.e. μm-range fiber diameter and fiber alignment, on early macrophage-driven scaffold degradation. Electrospun polycaprolactone-bisurea (PCL-BU) scaffolds with either 2 or 6 μm (?) isotropic or anisotropic fibers were seeded with THP-1 derived human macrophages and cultured in vitro for 4 or 8 days. Our results revealed that macrophage-induced oxidative degradation in particular was dependent on scaffold microarchitecture, with the highest level of ROS-induced lipid peroxidation, NADPH oxidase gene expression and degradation in the larger fiber ? anisotropic group. Whereas biochemically polarized macrophages demonstrated a phenotype-specific degradative potential, the observed differences in macrophage degradative potential instigated by the scaffold microarchitecture could not be attributed to either distinct M1 or M2 polarization. This suggests that the scaffold microarchitecture uniquely affects macrophage-driven degradation. These findings emphasize the importance of considering the scaffold microarchitecture in the design of scaffolds for in situ tissue engineering applications and the tailoring of degradation kinetics thereof.
机译:原位组织工程是一种技术,其中植入了非细胞生物材料支架,以诱导置换或受损组织的局部再生。可降解的合成电纺支架是一类用途广泛的生物材料,可用于各种原位组织工程应用,例如心血管替代物。功能性原位组织再生取决于内源性新组织形成与支架降解之间的平衡。这两个过程都是由巨噬细胞驱动的。侵入支架后,巨噬细胞会分泌活性氧(ROS)和水解酶,分别导致氧化和酶促生物材料降解。这项研究旨在阐明支架微体系结构(即,μm范围的纤维直径和纤维排列)对早期巨噬细胞驱动的支架降解的影响。将具有2或6μm(?)各向同性或各向异性纤维的静电纺丝聚己内酯-双脲(PCL-BU)支架接种到THP-1衍生的人类巨噬细胞中,并在体外培养4或8天。我们的结果表明,巨噬细胞引起的氧化降解尤其取决于支架微结构,在较大的纤维中,ROS引起的脂质过氧化,NADPH氧化酶基因表达和降解水平最高。各向异性群。尽管生化极化的巨噬细胞表现出特定的表型降解电位,但观察到的支架微体系结构在巨噬细胞降解电位上的差异不能归因于明显的M1或M2极化。这表明支架微体系结构独特地影响巨噬细胞驱动的降解。这些发现强调了在为原位组织工程应用设计的支架及其降解动力学的设计中考虑支架微体系结构的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号