...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Biomethane Production From Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion
【24h】

Biomethane Production From Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion

机译:木质纤维素生产生物甲烷:生物量顽固及其对厌氧消化的影响

获取原文

摘要

Anaerobic digestion using lignocellulosic material as the substrate is a cost-effective strategy for biomethane production, which provides great potential to convert biomass into renewable energy. However, the recalcitrance of native lignocellulosic biomass makes it resistant to microbial hydrolysis, which reduces the bioconversion efficiency of organic matter into biogas. Therefore, it is necessary to critically investigate the correlation between lignocellulose characteristics and bioconversion efficiency. Accordingly, this review comprehensively summarizes the anaerobic digestion process and rate-limiting step, structural and compositional properties of lignocellulosic biomass, recalcitrance and inhibitors of lignocellulose and their major effects on anaerobic digestion for biomethane production. Moreover, various type of pretreatment strategies applied to lignocellulosic biomass was discussed in detail, which would contribution to cell wall degradation and improvement of biomethane yields. In the view of current knowledge, high energy input and cost requirements are the main limitations of these pretreatment methods. In addition to optimization of fermentation process, further studies should focus much more on key structural influence factors of biomass recalcitrance and anaerobic digestion efficiency, which will contribute to improvement of biomethane production from lignocellulose.
机译:使用木质纤维素材料作为底物的厌氧消化是生产生物甲烷的一种经济高效的策略,它具有将生物质转化为可再生能源的巨大潜力。但是,天然木质纤维素生物质的顽强抵抗力使其抵抗微生物水解,从而降低了有机物向沼气的生物转化效率。因此,有必要认真研究木质纤维素特性与生物转化效率之间的相关性。因此,本综述全面总结了厌氧消化过程和限速步骤,木质纤维素生物质的结构和组成特性,木质纤维素的顽固性和抑制剂及其对厌氧消化生产生物甲烷的主要作用。此外,详细讨论了应用于木质纤维素生物质的各种预处理策略,这将有助于细胞壁降解和生物甲烷产率的提高。根据当前的知识,高能量输入和成本要求是这些预处理方法的主要限制。除了优化发酵工艺外,进一步的研究应更多​​地集中在生物质难降解和厌氧消化效率的关键结构影响因素上,这将有助于改善木质纤维素生产生物甲烷的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号