...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study
【24h】

Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

机译:机械循环支持中来自完全植入式能量源的体内热分布:概念验证计算研究

获取原文

摘要

Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature-histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design blood thermal boundary layer temperatures exceed 50$^circ$C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.
机译:机械循环支持设备(例如全人工心脏和左心室辅助设备)依靠外部能源来连续运行。临床上认可的电源依赖于将外部能源连接到植入式设备的经皮电缆,具有相关的感染风险。在70年代和80年代进行了研究的一种替代方法是采用完全植入的核动力源。核衰变产生的热量可以转化为电能,为循环支持设备供电。由于转换效率低,会产生大量的废热,必须将其散发以避免组织受损,中暑和死亡。本工作通过计算评估降主动脉中血流清除局部产生的废热以供随后的全身分布和消散的能力,其具体目的是研究将局部峰值温度控制在生理上可接受的范围内的方法。为了这个目的,开发了人主动脉中的血流和不同的热交换器体系结构的流固耦合传热计算模型。粒子跟踪用于评估通过热交换器区域的细胞的温度历史记录。使用降主动脉中的血流作为散热器被证明是消除余热负荷的可行方法。使用基本的热交换器设计,血液的热边界层温度超过50℃,可能损坏血细胞和蛋白质。热交换器的改进设计,加上散热片和热导装置,可大大降低血液温度,可能导致生物相容性更高的植入物。将血液温度维持在生物相容性水平的能力最终将允许热量负荷在人体上分布并随后散失,而对人体生理的影响最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号