...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Repositioning Titanium: An In Vitro Evaluation of Laser-Generated Microporous, Microrough Titanium Templates As a Potential Bridging Interface for Enhanced Osseointegration and Durability of Implants
【24h】

Repositioning Titanium: An In Vitro Evaluation of Laser-Generated Microporous, Microrough Titanium Templates As a Potential Bridging Interface for Enhanced Osseointegration and Durability of Implants

机译:重新放置钛:激光生成的微孔,粗糙的钛模板的体外评估作为潜在的桥接界面,以增强骨整合和植入物的耐用性。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Although titanium alloys remain the preferred biomaterials for the manufacture of biomedical implants today, such devices can fail within 15 years of implantation due to inadequate osseointegration. Furthermore, wear debris toxicity due to alloy metal ion release has been found to cause side-effects including neurotoxicity and chronic inflammation. Titanium, with its known biocompatibility, corrosion resistance, and high elastic modulus, could if harnessed in the form of a superficial scaffold or bridging device, resolve such issues. A novel three-dimensional culture approach was used to investigate the potential osteoinductive and osseointegrative capabilities of a laser-generated microporous, microrough medical grade IV titanium template on human skeletal stem cells. Human skeletal stem cells seeded on a rough 90 μm pore surface of ethylene oxide sterilized templates were observed to be strongly adherent, and to display early osteogenic differentiation, despite their inverted culture in basal conditions over 21 days. Limited cellular migration across the template surface highlighted the importance of high surface wettability in maximizing cell adhesion, spreading and cell-biomaterial interaction, while restricted cell ingrowth within the conical-shaped pores underlined the crucial role of pore geometry and size in determining the extent of osseointegration of an implant device. The overall findings indicate that titanium only devices, with appropriate optimizations to porosity and surface wettability, could yet play a major role in improving the long-term efficacy, durability, and safety of future implant technology.
机译:尽管钛合金仍然是当今制造生物医学植入物的首选生物材料,但由于骨整合不足,此类装置可能会在植入后15年内失效。此外,已经发现由于合金金属离子的释放而产生的磨损碎片毒性会引起副作用,包括神经毒性和慢性炎症。钛具有已知的生物相容性,耐腐蚀性和高弹性模量,如果以浅层支架或桥接装置的形式加以利用,则可以解决这些问题。一种新颖的三维培养方法被用来研究人类骨骼干细胞上激光产生的微孔,微粗糙的医用IV级钛模板的潜在骨诱导和骨整合能力。尽管在基础条件下倒置培养了21天,但观察到接种在90μm环氧乙烷灭菌模板的粗糙毛孔表面上的人骨骼干细胞具有很强的粘附力,并显示出早期的成骨分化。整个模板表面上有限的细胞迁移突出了高表面可湿性在最大化细胞黏附,扩散和细胞-生物材料相互作用中的重要性,而圆锥形孔内受限的细胞向内生长则强调了孔的几何形状和尺寸在决定膜的程度方面的关键作用。植入装置的骨整合。总体研究结果表明,对孔隙率和表面润湿性进行了适当优化的纯钛装置仍可能在改善未来植入技术的长期功效,耐用性和安全性方面发挥重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号