首页> 外文期刊>Frattura e Integrita Strutturale >Experimental evaluation of CTOD in constant amplitude fatigue crack growth from crack tip displacement fields
【24h】

Experimental evaluation of CTOD in constant amplitude fatigue crack growth from crack tip displacement fields

机译:CTOD在裂纹尖端位移场等幅疲劳裂纹扩展中的实验评估

获取原文
           

摘要

In the current work an experimental study of the crack tip opening displacement (CTOD) is performed to evaluate the ability of this parameter to characterise fatigue crack growth. A methodology is developed to measure and to analyse the CTOD from experimental data. The vertical displacements measured by implementing Digital Image Correlation on growing fatigue cracks are used to measure the CTOD. Fatigue tests at R ratios of 0.1 and 0.6 were conducted on compact-tension specimens manufactured from commercially pure titanium. A sensitivity analysis was performed to explore the effect of the position selected behind the crack tip for the CTOD measurement. The analysis of a full loading cycle allowed identifying the elastic and plastic components of the CTOD. The plastic CTOD was found to be directly related to the plastic deformation at the crack tip. Moreover, a linear relationship between da/dN and the plastic CTOD for both tests was observed. Results show that the CTOD can be used as a viable alternative to ?K in characterising fatigue crack propagation because the parameter considers fatigue threshold and crack shielding in an intrinsic way. This work is intended to contribute to a better understanding of the different mechanisms driving fatigue crack growth and the address the outstanding controversy associated with plasticity-induced fatigue crack closure.
机译:在当前的工作中,进行了裂纹尖端开口位移(CTOD)的实验研究,以评估该参数表征疲劳裂纹扩展的能力。开发了一种方法来测量和分析来自实验数据的CTOD。通过对增长中的疲劳裂纹实施数字图像相关性测量的垂直位移用于测量CTOD。在由商业纯钛制成的紧凑张力试样上,进行了R比为0.1和0.6的疲劳试验。进行了敏感性分析,以探索裂纹尖端后选择的位置对CTOD测量的影响。对整个加载周期的分析可以确定CTOD的弹性和塑性成分。发现塑性CTOD与裂纹尖端处的塑性变形直接相关。此外,在两个测试中都观察到da / dN与塑料CTOD之间存在线性关系。结果表明,CTOD可以用作表征疲劳裂纹扩展的替代方法,因为该参数以固有方式考虑了疲劳阈值和裂纹屏蔽。这项工作旨在有助于更好地理解驱动疲劳裂纹扩展的不同机制,并解决与可塑性引起的疲劳裂纹闭合相关的突出争议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号