...
首页> 外文期刊>Frontiers in Plant Science >Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase ( UPM1)
【24h】

Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase ( UPM1)

机译:尿卟啉原III甲基转移酶( UPM1 )的过度表达减轻了 Arabidopsis thaliana 的氮和硫缺乏,增强了光合作用。

获取原文
           

摘要

Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR) and sulfite reductase (SiR); it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N) and sulfur (S) assimilation. Further, uroporphyrinogen III methyltransferase (UPM1), responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR ( NII ) and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR). We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1 overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than the wild type (WT). Conversely, the antisense plants had lower protein content and photosynthetic efficiency in N-deficient environment. Our results clearly demonstrate that upregulation of siroheme biosynthesis leads to increased nitrogen and sulfur assimilation, and this imparts tolerance to nitrogen and sulfur deficiency in Arabidopsis thaliana plants.
机译:西罗血红素是含铁的四吡咯,是亚硝酸还原酶(NiR)和亚硫酸还原酶(SiR)的辅基。它是由叶绿素生物合成的中间产物尿卟啉原III合成的,是氮(N)和硫(S)同化所必需的。此外,负责两个甲基化反应以形成二氢西柔盐酸的尿卟啉原III甲基转移酶(UPM1)将尿卟啉原III从叶绿素的生物合成途径转移至西罗血红素的合成。为了调节拟南芥血红素的生物合成,使用AtUPM1 [At5g40850]产生拟南芥的有义和反义植物。在我们的实验中,AtUPM1的过表达表示较高的NiR(NII)和SiR基因及基因产物表达。发现增加的NII表达可调节和增强硝酸还原酶(NR)的转录本和蛋白质丰度。我们认为,在我们的研究中观察到,升高的NiR,NR和SiR表达必须有助于AtUPM1过表达子中含S氨基酸的合成增加。我们注意到,由于这些植物中较高的N和S同化作用,这些植物中的总蛋白质含量增加了。因此,这些有义植物中叶绿素的生物合成增加。植物中较高的叶绿素和蛋白质含量上调了有义植物中的光合作用电子传递和碳同化。此外,我们已经观察到这些植物中植物生物量的增加,这一定是由于N,S和C同化作用的增加。另一方面,在反义植物中,NiR和SiR的转录本丰度和蛋白质含量显示降低,导致总蛋白质和叶绿素含量降低。这导致这些反义植物的光合电子传输速率,碳同化作用和植物生物量下降。在氮或硫的饥饿条件下,过表达子比野生型(WT)具有更高的蛋白质含量和光合电子传递速率。相反,在缺氮环境下反义植物的蛋白质含量较低,光合作用效率较低。我们的结果清楚地表明,西罗血红素生物合成的上调导致氮和硫同化增加,并且赋予了拟南芥植物对氮和硫缺乏的耐受性。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号