首页> 外文期刊>Frontiers in Plant Science >Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change
【24h】

Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change

机译:异戊二烯在受气候变化相关环境压力挑战的植物中的反应和功能

获取原文
           

摘要

The functional reasons for isoprene emission are still a matter of hot debate. It was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism in plants adapted to high water availability, to cope with transient and recurrent oxidative stresses during their water-to-land transition. There is a tight association between isoprene emission and species hygrophily, suggesting that isoprene emission may be a favorable trait to cope with occasional exposure to stresses in mesic environments. The suite of morpho-anatomical traits does not allow a conservative water use in hygrophilic mesophytes challenged by the environmental pressures imposed or exacerbated by drought and heat stress. There is evidence that in stressed plants the biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis of isoprene is costly, the great investment of carbon and energy into isoprene must have relevant functional reasons. Isoprene is effective in preserving the integrity of thylakoid membranes, not only through direct interaction with their lipid acyl chains, but also by up-regulating proteins associated with photosynthetic complexes and enhancing the biosynthesis of relevant membrane components, such as mono- and di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally protect photosynthetic membranes by scavenging reactive oxygen species. Here we explore the mode of actions and the potential significance of isoprene in the response of hygrophilic plants when challenged by severe stress conditions associated to rapid climate change in temperate climates, with special emphasis to the concomitant effect of drought and heat. We suggest that isoprene emission may be not a good estimate for its biosynthesis and concentration in severely droughted leaves, being the internal concentration of isoprene the important trait for stress protection.
机译:异戊二烯排放的功能原因仍然是一个热门争论的问题。据推测,异戊二烯生物合成作为植物的祖先机制而进化,该植物适应于高水可利用性,以应对其从水到地的过渡过程中的短暂和反复的氧化胁迫。异戊二烯的排放与物种吸湿性之间存在紧密的联系,这表明异戊二烯的排放可能是应对偶尔暴露于中等环境中的压力的​​有利特征。这套形态-解剖学特征不允许在吸湿的中生植物中保守使用水分,因为干旱和高温胁迫施加或加剧了环境压力,这对吸湿性中生植物造成了挑战。有证据表明,在受胁迫的植物中,异戊二烯的生物合成与光合作用无关。由于异戊二烯的生物合成成本高昂,因此碳和能源在异戊二烯中的大量投资必须具有相关的功能原因。异戊二烯不仅通过与其类脂酰基链的直接相互作用,而且还通过上调与光合复合物相关的蛋白质并增强相关膜成分(如单-和半-半乳糖基)的生物合成,从而有效地保持类囊体膜的完整性。 -二酰基甘油和不饱和脂肪酸。异戊二烯还可以通过清除活性氧来保护光合膜。在这里,我们探讨了在温带气候下与快速气候变化有关的严峻胁迫条件下,异戊二烯在吸湿性植物的反应中的作用方式和潜在意义,并特别强调了干旱和高温的伴随效应。我们建议异戊二烯的排放可能不是对其严重干旱叶片的生物合成和浓度的一个很好的估计,因为异戊二烯的内部浓度是保护压力的重要特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号