首页> 外文期刊>Frontiers in Plant Science >NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0
【24h】

NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0

机译:NSP依赖的简单腈形成主要是分解拟南芥 Columbia-0的根,种子和幼苗中主要脂肪族芥子油苷的作用的结果。

获取原文
       

摘要

One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70–80% of the nitrile-forming activity was due to NSP1 and NSP3 . Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system.
机译:研究最深入的植物防御系统之一是十字花科的芥子油苷-黑芥子酶系统,由被称为芥子油苷的硫代葡糖苷及其水解酶黑芥子酶组成。组织破坏使这些组分聚集在一起,并且由于黑芥子酶催化的芥子油苷水解而形成生物活性产物。在这些产品中,异硫氰酸酯作为化学植物防御人类饮食中的食草动物和病原体以及促进健康的化合物而引起了极大的兴趣。先前的研究已经鉴定了指定蛋白质,其存在导致形成替代产品类型,例如腈,而以异硫氰酸盐为代价。对指定蛋白和替代分解产物的生物学作用了解甚少。在这里,我们评估了拟南芥Columbia-0的根,幼苗和种子浸软后获得的芥子油苷分解产物特征。我们确定简单的腈是根,种子和幼苗匀浆中主要内源性脂肪族芥子油苷的主要分解产物。与这一发现相一致的是,在根,种子和幼苗中表达了编码腈指示蛋白(NSP)的基因。对五个NSP基因中任何一个的T-DNA插入突变体中芥子油苷分解的分析表明,组织破坏后简单的腈形成几乎完全取决于种子中的NSP2,而主要取决于幼苗中的NSP1。在根部,约70-80%的腈形成活性归因于NSP1和NSP3。因此,芥子油苷分解产物概况在拟南芥Col-0中受到器官特异性调节,并且在植物的某些部分中形成高比例的简单腈。在关于硫代葡萄糖苷-黑芥子酶系统的生物学作用的未来研究中应考虑到这一点。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号