首页> 外文期刊>Frontiers in Plant Science >Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls
【24h】

Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

机译:从植物细胞壁中富集生物质资源生产可再生液体运输燃料的新兴技术

获取原文
获取外文期刊封面目录资料

摘要

Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called ‘agnostic’ technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries.
机译:植物细胞壁主要由纤维素,一系列非纤维素多糖和木质素组成。墙壁不仅占小麦秸秆和甘蔗渣等农作物残渣的很大比例,而且还占木材工业和专门用于生物燃料生产的特种草及其他植物残渣的很大比例。长期以来,植物细胞壁的多糖成分一直被认为是可发酵糖的超大型来源,可用于生产生物乙醇和其他可再生液体运输燃料。估计每年从捕获的光能获得的植物纤维素产量约为数千亿吨。木质素以相同的数量级合成,并且作为苯基丙烷类残基的非常大的聚合物,木质素也是丰富的高能大分子。然而,植物中这些细胞壁成分的主要功能之一是提供极高的拉伸和压缩强度,使植物能够抵抗重力和广泛的其他机械力。经过数百万年的发展,这些壁成分在自然选择下得到了进化,以生成极其坚韧和有弹性的生物材料。因此,将这些坚韧的细胞壁复合材料迅速降解为可发酵的糖是一项艰巨的任务,并且大大减慢了以木质纤维素为基础的可行生物燃料产业的发展。但是,通过对木质纤维素本身进行改造,生物质的创新性预处理,改良的酶以及高级酵母和其他微生物的开发,在克服生物燃料工业中所谓的木质纤维素原料的顽固性方面取得了良好的进展。发酵过程。然而,有人认为,生物乙醇可能不是木质纤维素生物质来源可产生的最好或唯一的生物燃料,并且本质上具有较高能量密度的碳氢化合物可能会使用能够转化多种形式植物和其他生物质通过热液化等所谓的“不可知论”技术转化为生物油。国际上可行的生物燃料产业的下一阶段发展将需要继续关注监管框架和政府的持续支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号