...
首页> 外文期刊>Frontiers in Physiology >Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring
【24h】

Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

机译:使用倾斜子空间投影分解近红外光谱信号:在脑血流动力学监测中的应用

获取原文
           

摘要

Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ? . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the NIRS measurements, facilitating the use of NIRS as a surrogate measure for cerebral blood flow (CBF). The second case study used data from a 3-years old infant under Extra Corporeal Membrane Oxygenation (ECMO), here SIDE-ObSP decomposed cerebral/peripheral tissue oxygenation, as a sum of the partial contributions from different systemic variables, facilitating the comparison between the effects of each systemic variable on the cerebral/peripheral hemodynamics.
机译:临床数据由在不同位置测量的大量同步收集的生物医学信号组成。解密这些信号的相互关系可以提供有关其依赖性的重要信息,从而提供一些有用的临床诊断数据。例如,通过计算近红外光谱信号(NIRS)与系统变量之间的耦合,可以评估血液动力学调节机制的状态。在本文中,我们介绍了一种将NIRS信号分解为加性分量的算法。基于斜子空间投影(SIDE-ObSP)的SIgnal分解算法假定所测得的NIRS信号是系统测量值的线性组合,遵循线性回归模型y = Ax +? 。 SIDE-ObSP分解输出,以便分解中的每个分量代表一个相应回归变量的唯一线性影响。该分解方案旨在更好地了解NIRS与系统变量之间的关系,并为回归算法的临床解释提供框架,从而有助于将其引入临床实践。 SIDE-ObSP将斜子空间投影(ObSP)与平均系统的结构结合在一起,以定义足够的信号子空间。为了保证在正常的生理过程中观察到的估计回归参数的平滑性,我们使用矩阵微分算子强加了Tikhonov正则化。我们通过使用合成数据集评估SIDE-ObSP的性能,并提出了使用NIRS在脑血流动力学监测领域进行的两个案例研究。此外,我们将这种方法的性能与其他系统识别技术进行了比较。在第一个案例研究中,使用了生命的前三天的20名新生儿的数据,此处SIDE-ObSP将NIOS测量中的动脉血氧饱和度变化的影响分离开来,从而有利于将NIRS用作脑血流的替代指标(CBF)。第二个案例研究使用的是3岁以下婴儿的体外膜氧合(ECMO)数据,此处SIDE-ObSP分解了脑/周围组织氧合,是不同系统变量部分贡献的总和,从而便于比较每个系统变量对脑/外周血流动力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号