首页> 外文期刊>Frontiers in Integrative Neuroscience >Editorial: The Vestibular System in Cognitive and Memory Processes in Mammalians
【24h】

Editorial: The Vestibular System in Cognitive and Memory Processes in Mammalians

机译:社论:哺乳动物的认知和记忆过程中的前庭系统

获取原文
       

摘要

In the nineteenth century Pierre–Jean–Marie Flourens ( 1825 ) and Ernst Mach described the vestibular system and its peripheral organs while Robert Barany, rewarded by the Nobel prize in 1914, was the first to investigate vestibular disorders with caloric tests making surgical treatments of the vestibular organ possible. Recently, Graf and Klam ( 2006 ) have reminded us that this ancient sensory system appeared more than 500 million years ago. Logically its influence would most likely not be restricted to balance reflexes at the brainstem level; it must have also shaped our brain. The vestibular system is the one sensory organ dedicated to gravity perception, which along with light and oxygen served as a motor of evolution. In the 1950s the groups of Otto–Joachim Grüsser in Germany, Wilder Penfield in Canada, and later the group of Alain Berthoz in France, demonstrated in elegant experiments on awake monkey (Guldin and Grüsser, 1998 ), epileptic patient (Penfield, 1957 ), and neurologically-normal human (Lobel et al., 1999 ) the existence of vestibular projections to the cortex and how they combine with visual and proprioceptive information. An increasing number of researchers, often fervent disciples, have built on these findings to produce a spate of publications that have consolidated the evidence for a sense of verticality and three-dimensional body representations within the vestibular cortical areas. In the 1990s Paul Smith and colleagues examined vestibular processing in the hippocampus and its role in spatial memory. Exploring this topic in the rodent (Smith, 1997 ), they began to elucidate the secrets and the previously silent functions of the vestibular system. These findings led to increasing clarity about how vestibular degeneration may be related to some aspects of dementia (Previc, 2013 ), psychiatric diseases (Gurvich et al., 2013 ), and cognitive impairments in the elderly (Bigelow et al., 2015 ; Semenov et al., 2015 ). The research by Marianne Dieterich and Thomas Brandt has examined the bilateral organization of multiple multisensory cortical areas and revealed the vestibular dominance of the non-dominant hemisphere (Dieterich et al., 2003 ). They addressed the following questions: how is one global percept of motion and orientation in space formed, and does this dominance determine the lateralization of brain function such as handedness (Brandt and Dieterich, 2015 )? A vestibular contribution to the most crucial aspects of the human sense of self and self-consciousness has recently been highlighted by neurological and neuroscientific investigations: vestibular signals contribute to the experience that the self is located within the boundaries of the body (Blanke et al., 2004 ; Lopez et al., 2008 ) and may even be involved in self-other discrimination and interactions (Lenggenhager and Lopez, 2015 ). In this Frontiers in Integrative Neuroscience Research Topic initiated by Sidney Simon, twenty-four articles highlight recent discoveries in the field of vestibular cognition, including: (1) Anatomy of the vestibulo-cortical pathways; (2) Spatial navigation and memory; (3) Spatial cognition, bodily and self-motion perception; (4) Vestibular stimulation and rehabilitation; (5) Posture and motor control; (6) Vestibular disorders and compensation; and (7) Development of vestibular function. Anatomy of the vestibulo-cortical pathways A better understanding of the vestibulo-thalamo-cortical pathways and cortical vestibular processing is needed to fully understand the reciprocal interactions between vestibular processing and cognition. Hitier et al. ( 2014 ) provide a comprehensive review of the pathways running from the vestibular apparatus to the cortex, with a focus on the vestibulo-hippocampal pathways. Ventre-Dominey ( 2014 ) proposes that two separate cortical vestibular subsystems underpin velocity and inertia processing. A better definition of the vestibular cortex is provided on the basis of clinical and neuroimaging investigations in brain-damaged patients by Brandt et al. ( 2014 ), and on the basis of electrophysiological investigations in epileptic patients by Hewett and Bartolomei ( 2013 ). Spatial navigation and memory Yoder and Taube ( 2014 ) and Smith and Zheng ( 2013 ) offer a recent overview of the vestibular contribution to spatial learning and navigation through the head direction and place cells and how vestibular information is integrated into higher navigation centers. Jacob et al. ( 2014 ) provide a review and original data relating to the role of the entorhinal cortex (EC) in spatial memory. Despite the evidence that place cells in the hippocampus are adversely affected by the loss of vestibular function, there have been no data reported relating to grid cells in the EC. Here the authors present evidence that inactivation of the vestibular system in rats using tetrodotoxin injections results in a decrease in power in velocity-related theta EEG (5–12 Hz) in the EC, suggestin
机译:在19世纪,Pierre–Jean–Marie Flourens(1825)和Ernst Mach描述了前庭系统及其周围器官,而Robert Barany在1914年获得诺贝尔奖后,是第一个使用热量测试研究前庭疾病并对其进行手术治疗的人前庭器官可能。最近,格拉夫和克拉姆(Graf and Klam(2006))提醒我们,这种古老的感觉系统出现于5亿多年前。从逻辑上讲,它的影响很可能不会局限于脑干水平的平衡反射。它一定也塑造了我们的大脑。前庭系统是专门用于重力感知的一种感觉器官,它与光和氧气一起成为进化的动力。在1950年代,德国的奥托-约阿希姆·格瑟(Otto-JoachimGrüsser)小组,加拿大的怀尔德·彭菲尔德(Wilder Penfield)小组以及法国的阿兰·贝索斯(Alain Berthoz)小组在清醒的猴子(Guldin andGrüsser,1998)的优雅实验中得到了证明(癫痫患者(Penfield,1957)) ,以及神经系统正常的人(Lobel等,1999),存在皮质前庭投射以及它们如何与视觉和本体感受信息结合。越来越多的研究人员,通常是热心的门徒,以这些发现为基础,产生了大量出版物,这些出版物巩固了前庭皮质区域内的垂直感和三维人体表征的证据。在1990年代,Paul Smith及其同事研究了海马的前庭加工及其在空间记忆中的作用。他们在啮齿动物中探索了这个话题(Smith,1997),他们开始阐明前庭系统的秘密和以前的沉默功能。这些发现使得人们对前庭变性与痴呆(Previc,2013),精神疾病(Gurvich et al。,2013)和老年人认知障碍(Bigelow et al。,2015; Semenov)的某些方面的关系越来越清晰。等人,2015)。玛丽安·迪特里里希(Marianne Dieterich)和托马斯·布兰特(Thomas Brandt)的研究检查了多个多感觉皮层区域的双边组织,并揭示了非优势半球的前庭优势(Dieterich et al。,2003)。他们提出了以下问题:如何形成一种在空间中运动和定向的全局感知,并且这种主导地位是否决定了大脑功能(如惯用性)的偏侧化(Brandt和Dieterich,2015年)?神经和神经科学研究最近强调了前庭对人类自我和自我意识最关键方面的贡献:前庭信号有助于自我位于身体边界内的体验(Blanke et al。 (2004年;洛佩兹等人,2008年),甚至可能参与其他自我的歧视和互动(Lenggenhager和Lopez,2015年)。在由西德尼·西蒙(Sidney Simon)发起的“综合神经科学研究前沿”主题中,二十四篇文章着重介绍了前庭认知领域的最新发现,包括:(1)前庭皮质通路的解剖; (2)空间导航与记忆; (3)空间认知,身体和自我运动知觉; (4)前庭刺激与康复; (5)姿势与运动控制; (6)前庭疾病和补偿; (7)前庭功能的发展。前庭-皮层通路的解剖需要更好地了解前庭-丘脑-皮层通路和皮质前庭加工,才能充分了解前庭加工与认知之间的相互关系。 Hitier等。 (2014)提供了从前庭设备到皮层的通路的全面综述,重点是前庭-海马通路。 Ventre-Dominey(2014)提出两个独立的皮质前庭子系统支持速度和惯性处理。 Brandt等人在对脑部受损患者进行临床和神经影像学检查的基础上,提供了对前庭皮层的更好定义。 (2014),以及Hewett和Bartolomei(2013)对癫痫患者进行电生理检查的基础。空间导航和记忆Yoder和Taube(2014年)以及Smith和Zheng(2013年)提供了关于前庭通过头部方向和位置单元对空间学习和导航的贡献的最新综述,以及前庭信息如何集成到更高的导航中心中。雅各布等。 (2014年)提供了有关内嗅皮层(EC)在空间记忆中的作用的综述和原始数据。尽管有证据表明海马中的放置细胞受到前庭功能丧失的不利影响,但尚无有关EC中网格细胞的报道数据。在这里,作者提出的证据表明,使用河豚毒素注射使大鼠前庭系统失活会导致EC中与速度相关的theta EEG(5–12 Hz)功率降低,这提示

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号