...
首页> 外文期刊>Frontiers in Physiology >Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism
【24h】

Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

机译:铁硫和钼辅因子酶通过控制细胞代谢来调节<果蝇>果蝇生命周期。

获取原文
           

摘要

Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
机译:酶部位存在铁硫(Fe-S)簇和钼辅助因子(Moco),在此处活性金属促进电子转移。这种酶系统可溶于线粒体基质,细胞质和细胞核,或包埋在线粒体内膜中,但实际上不存在细胞分泌途径。它们具有古老的进化起源,支持呼吸作用,DNA复制,转录,翻译,类固醇的生物合成,血红素,嘌呤分解代谢,异生物素的羟基化和细胞硫代谢。在此,对果蝇中的Fe-S簇和Moco生物合成进行了综述,并描述了已知的Fe-S和Moco酶的多种生化和生理功能。我们表明,Mocs3的RNA干扰破坏了Moco的生物合成和昼夜节律。 Fe-S依赖线粒体呼吸是在种系和体细胞发育,干细胞分化和衰老的背景下讨论的。强调了Fe-S和Moco装配机械组件的亚细胞区室化及其与铁感测机制和中间代谢的联系。提出了异源表达的蝇Nfs1,Isd11,IscU和人类frataxin的生化活性Fe-S核心复合物。基于最近的证明,铜取代了酵母和人类铁氧还蛋白的Fe-S簇,提出了一个解释,为什么高饮食铜会导致果蝇的细胞质铁缺乏。提出了外泌体有助于黄嘌呤脱氢酶从周围组织向眼睛色素细胞运输的另一种提议,其中HOPS复合物的Vps16a亚基可能在浓缩这种酶在色素颗粒中起特殊作用。最后,我们提出一个假设,即(i)线粒体超氧化物以乌头酸酶和琥珀酸脱氢酶动员Fe-S簇中的铁; (ii)铁的增加会暂时取代超氧化物歧化酶上的锰,而锰会由于铁的失活而充当线粒体铁传感器; (iii)在克雷布斯循环被破坏的情况下,柠檬酸盐输出到细胞质中进行脂肪酸合成,而琥珀酰辅酶A和铁用于血红素的生物合成; (iv)由于铁用于血红素的生物合成,其在基质中的浓度下降,从而允许锰重新活化超氧化物歧化酶和Fe-S簇生物合成以重建克雷布斯循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号