...
首页> 外文期刊>Frontiers in Marine Science >Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments
【24h】

Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments

机译:海洋酸化和海面温度升高对珊瑚礁碳酸盐沉积物溶解的拮抗作用

获取原文

摘要

Increasing atmospheric CO2 is raising sea surface temperature (SST) and increasing seawater CO2 concentrations, resulting in a lower oceanic pH (ocean acidification; OA), which is expected to reduce the accretion of coral reef ecosystems. Although sediments comprise most of the calcium carbonate (CaCO3) within coral reefs, no in situ studies have looked at the combined effects of increased SST and OA on the dissolution of coral reef CaCO3 sediments. In situ benthic chamber incubations were used to measure dissolution rates in permeable CaCO3 sands under future OA and SST scenarios in a coral reef lagoon on Australia’s Great Barrier Reef (Heron Island). End of century (2100) simulations (temperature +2.7°C and pH -0.3) shifted carbonate sediments from net precipitating to net dissolving. Warming increased the rate of benthic respiration (R) by 29% per 1°C and lowered the ratio of productivity to respiration (P/R; ΔP/R = -0.23), which increased the rate of CaCO3 sediment dissolution (average net increase of 18.9 mmol CaCO3 m-2 d-1 for business as usual scenarios). This is most likely due to the influence of warming on benthic P/R which, in turn, was an important control on sediment dissolution through the respiratory production of CO2. The effect of increasing CO2 on CaCO3 sediment dissolution (average net increase of 6.5 mmol CaCO3 m-2 d-1 for business as usual scenarios) was significantly less than the effect of warming. However, the combined effect of increasing both SST and pCO2 on CaCO3 sediment dissolution was non-additive (average net increase of 5.6 mmol CaCO3 m-2 d-1) due to the different responses of the benthic community. This study highlights that benthic biogeochemical processes such as metabolism and associated CaCO3 sediment dissolution respond rapidly to changes in SST and OA, and that the response to multiple environmental changes are not necessarily additive.
机译:大气中二氧化碳的增加会提高海面温度(SST),海水中的二氧化碳浓度也会增加,导致海洋pH值降低(海洋酸化; OA),这有望减少珊瑚礁生态系统的积聚。尽管沉积物包含珊瑚礁内的大部分碳酸钙(CaCO3),但尚无原位研究研究SST和OA升高对珊瑚礁CaCO3沉积物溶解的综合影响。在澳大利亚大堡礁(赫伦岛)的珊瑚礁泻湖中,在未来的OA和SST情景下,使用原位底栖腔室培养来测量可渗透CaCO3砂的溶解速率。世纪末(2100年)的模拟(温度+ 2.7°C和pH -0.3)使碳酸盐沉积物从净沉淀转变为净溶解。气候变暖使底栖呼吸(R)的速率每1°C升高29%,降低了生产力与呼吸的比率(P / R;ΔP/ R = -0.23),从而增加了CaCO3沉积物的溶出速率(平均净增加) 18.9 mmol CaCO3 m-2 d-1用于常规情况)。这很可能是由于变暖对底栖P / R的影响,而底栖P / R反过来又是通过呼吸产生CO2对沉积物溶解的重要控制。增加CO2对CaCO3沉积物溶解的影响(照常情况下,平均净增加6.5 mmol CaCO3 m-2 d-1)远小于变暖的影响。然而,由于底栖生物群落的不同反应,增加SST和pCO2两者对CaCO3沉积物溶解的综合作用是不可累加的(平均净增加5.6 mmol CaCO3 m-2 d-1)。这项研究强调,底栖生物地球化学过程(例如新陈代谢和相关的CaCO3沉积物溶解)对SST和OA的变化快速响应,并且对多种环境变化的响应不一定是累加的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号