...
首页> 外文期刊>Frontiers in Microbiology >Corrigendum: Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation
【24h】

Corrigendum: Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation

机译:更正:用于鉴定分子流行病学标记的志贺氏菌和肠侵袭性大肠杆菌的系统发生分析:全基因组比较分析不支持不同的属称

获取原文
           

摘要

In the original article, there was a mistake in Table 1 as published. Our collection stock of EIEC-O152 (1) contained low level of ExPEC-O25:H16 which was sequenced in the study instead of EIEC. The corrected Table 1 appears below. Table 1 Number of bacterial isolates and serotypes. Tree label Description Isolates Serotypes EIEC Enteroinvasive E. coli 32 15 EAEC Enteroaggregative E. coli 3 3 STEC Shiga-toxin producing E. coli 1 1 ExPEC Extraintestinal E. coli 6 3 EPEC Enteropathogenic E. coli 3 2 EHEC Enterohemorrhagic E. coli 5 5 E. fergusonii E. fergusonii 2 1 SD Shigella dysenteriae 23 14 SF Shigella flexneri 36 6 SB Shigella boydii 32 20 SS Shigella sonnei 26 1 S. enterica Salmonella enterica 2 1 Total 171 72 The ExPEC cluster contains the ExPEC-O25:H16 instead of the one EIEC isolate but this cluster was not discussed in the original manuscript. The NCBI accession has been updated as well.Labels for EIEC-O152 (1) were modified to ExPEC-O25:H16 on the phylogenetic trees displayed in Figures 1 , 3 , and in Supplementary Figures 1 , 4 – 6 , and in Supplementary Tables 1 , 3 . Figure 1 A maximum-likelihood (ML) phylogeny of Shigella , enteroinvasive E. coli (EIEC) and non-invasive E. coli strains based on 7,062 core SNPs using kSNP (Gardner and Hall, 2013). The ML tree was generated using GARLI v. 2.0.1019 under the GTR + I + Γ model and other default settings (Zwickl, 2006). Trees were visualized with Figtree v. 1.3.1 (Rambaut and Drummond, 2009). The best tree was chosen from 1,000 runs of the data set and bootstrap values (1,000 iterations) are reported above each node. Bootstrap values <80% are not shown. A tree that includes the Salmonella outgroup can be found in Supplementary Figure 1 . Figure 3 Hierarchical clustering and heat map illustrating the differences in predicted protein homologs between genomes. Manhattan distances were calculated from a pairwise abundance matrix of 3,777 predicted protein homologs that were identified using the default BLASTP bidirectional best hit approach (75% amino acid sequence coverage, 1e-05 E-value and 60% sequence identity) within the program GET_HOMOLOGUES (Contreras-Moreira and Vinuesa, 2013). Only genes shared by at least two samples were included. Blue cells on the heat map indicate that genomes share more similar genes. The dendrogram on y-axis indicates hierarchical clustering of the abundance matrix using the average linkage method and Manhattan distances with bootstrap probabilities (BP, only values of ≥80 shown in black) and approximately unbiased p -values (AU, only values of ≥95 shown in red) from 10,000 replicates. The phylogenetic group of each genome from Figure 1 is represented as a colored bar in between the dendrogram and the heat map. Additionally, the text in the Phylogeny subsection in Results, first paragraph, should be written as:One hundred and seventy-one genomes were selected to encompass a large selection of EIEC strains and represent the diversity of the Shigella genus. Genomes from 35 isolates were in-house sequenced draft genomes while 136 were available in public databases (Supplementary Table 1 ). We used 23 isolates of SD, including a minimum of 14 serotypes, 36 SF isolates, including at least six serotypes, 32 SB isolates, covering all 20 serotypes, 26 SS isolates, 32 EIEC isolates with 15 different serotypes, 18 isolates of non-invasive E. coli composed of 14 different serotypes, two isolates of E. fergusonii . The genomes of two Salmonella isolates were used for an outgroup (Table 1 ).In the original article, there was a mistake in Table 2 as published. A coding mistake led to incorrect identification of lineage-specific SNPs. We reported 404 diagnostic SNPs, but the correct count is 254. The corrected Table 2 appears below and Supplementary Table 2 with the sequences of the regions containing the diagnostic SNPs has been modified. Table 2 Phylogenetic group name (from Figure 1 ), number of individuals within each group ( N ) and the number of diagnostic SNPs ( D _( snps )). Group N D_( snps ) EIEC/EHEC/EAEC 12 6 EIEC large 16 0 EIEC small 3 31 ExPEC 6 71 SB/SD large 38 7 SB/SD small 15 21 SD serotype 1 3 1 SD serotype 10 3 37 SD serotype 8/EHEC/EPEC 10 1 SF 33 34 SS 26 45 Total 165 254 The abstract should read “Lastly, we identified a panel of 254 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC.” Similarly, the second line in the Lineage-Specific SNP Identification and Evaluation of Previously Described Molecular Assays for the Differentiation of Shigella and EIEC subsection in Results should read: “From 7,062 core SNPs, we found 254 SNP positions that were diagnostic for each of the clusters (Supplementary Table S2 ).”The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way.The original article has been updated. Conflict of interest statement The authors declare that t
机译:在原始文章中,表1的发布存在错误。我们收集的EIEC-O152(1)的库存中含有低含量的ExPEC-O25:H16,该物质在研究中被取代而不是EIEC。校正后的表1出现在下面。表1细菌分离株和血清型的数量。树状标签描述分离的血清型EIEC肠侵袭性大肠杆菌32 15 EAEC肠聚集性大肠杆菌3 3 STEC产生志贺毒素的大肠杆菌1 1 ExPEC肠外大肠杆菌6 3 EPEC肠致病性大肠杆菌3 2 EHEC肠出血性大肠杆菌5 5 E. fergusonii E. fergusonii 2 1 SD痢疾志贺氏菌23 14 SF弗氏志贺氏菌36 6 SB博氏志贺氏菌32 20 SS sonnei sonnei 26 1 S. enterica沙门氏菌肠杆菌2 1总计171 72 ExPEC簇包含ExPEC-O25:H16而不是一个EIEC隔离区,但原始手稿中未讨论该群集。 NCBI登录号也已更新。图1、3和补充图1、4、6和补充表中显示的系统树上,将EIEC-O152(1)的标签修改为ExPEC-O25:H16。 1,3。图1基于kSNP的志贺氏菌,肠道侵袭性大肠杆菌(EIEC)和非侵袭性大肠杆菌菌株基于7,062个核心SNP的最大似然(ML)系统发育(Gardner and Hall,2013)。 ML树是使用GARLI v.2.0.1019在GTR + I +Γ模型和其他默认设置下生成的(Zwickl,2006)。树木通过Figtree 1.3.1版可视化(Rambaut和Drummond,2009年)。从数据集的1,000次运行中选择了最佳树,并在每个节点上方报告了引导程序值(1,000次迭代)。引导值<80%未显示。可以在补充图1中找到包含沙门氏菌外群的树。图3层次聚类和热图说明了基因组之间预测的蛋白质同源物的差异。曼哈顿距离是根据GET_HOMOLOGUES程序中默认的BLASTP双向最佳匹配方法(75%的氨基酸序列覆盖率,1e-05 E值和60%的序列同一性)在3777个预测的蛋白质同源物的成对丰度矩阵中计算得出的( Contreras-Moreira和Vinuesa,2013年)。仅包括至少两个样品共有的基因。热图上的蓝色细胞表示基因组共享更多相似的基因。 y轴上的树状图表示使用平均链接方法和曼哈顿距离的丰度矩阵的层次聚类,其中曼哈顿距离具有自举概率(BP,只有≥80的值显示为黑色)和近似无偏的p值(AU,只有≥95的值) 10,000个重复中的红色)。图1中每个基因组的系统发育组表示为树状图和热图之间的彩色条。此外,结果第一部分的系统发育小节中的文字应写为:选择了一百一十一个基因组以涵盖大量的EIEC菌株,并代表志贺氏菌属的多样性。来自35个分离株的基因组是内部测序的基因组草图,而公共数据库中有136个可用(补充表1)。我们使用了23种SD菌株,包括至少14种血清型,36种SF菌株,包括至少6种血清型,32种SB菌株,涵盖所有20种血清型,26种SS菌株,32种具有15种不同血清型的EIEC菌株,18种非血清型。侵袭性大肠杆菌由14种不同血清型组成,两种分离株为弗格森氏大肠杆菌。将两个沙门氏菌分离株的基因组用于一个外群(表1)。在原始文章中,表2的发布存在错误。编码错误导致沿袭特定SNP的识别不正确。我们报告了404个诊断SNP,但正确的计数是254。校正后的表2出现在下面,补充表2中包含诊断SNP的区域的序列已被修改。表2系统发生组名称(来自图1),每个组中的个体数(N)和诊断性SNP数(D _(snps))。 N组D_(snps)EIEC / EHEC / EAEC 12 6 EIEC大16 0 EIEC小3 31 ExPEC 6 71 SB / SD大38 7 SB / SD小15 21 SD血清型1 3 1 SD血清型10 3 37 SD血清型8 / EHEC / EPEC 10 1 SF 33 34 SS 26 45总计165 254摘要应为“最后,我们鉴定了一组254个针对每个系统发育簇的单核苷酸多态性(SNP)标记,以更准确地鉴定志贺氏菌和EIEC。”同样,结果中针对志贺氏菌和EIEC的区分的分子生物学特定SNP鉴定和评估的先前描述的分子分析的第二行应显示为:“从7,062个核心SNP中,我们发现254个SNP位置对于每个作者对这些错误深表歉意,并指出这丝毫不会改变本文的科学结论。原始文章已更新。利益冲突声明作者宣称

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号