首页> 外文期刊>Frontiers in Plant Science >Understanding “green” multicellularity: do seaweeds hold the key?
【24h】

Understanding “green” multicellularity: do seaweeds hold the key?

机译:了解“绿色”多细胞性:海藻掌握了关键吗?

获取原文
获取外文期刊封面目录资料

摘要

Introduction Living organisms are unicellular, composed of a single cell, or multicellular, where a group of up to ~10~(12)cells functions co-operatively (Kaiser, 2001 ). All multicellular organisms evolved from single-celled ancestors; every individual organism arises from a unicell and reproduces by forming unicells. Multicellularity enables competitive advantages, and may have shaped our oxygen-rich atmosphere (Grosberg and Strathmann, 1998 ; Kaiser, 2001 ; Schirrmeister et al., 2013 ). Multicellularity has evolved multiple times: animals, plants, algae, amoebae, fungi, and bacteria are or can all be multicellular (King, 2004 ; Grosberg and Strathmann, 2007 ; Rokas, 2008 ; Claessen et al., 2014 ). Multicellularity can be clonal (arising from division of a single cell) or aggregative (aggregation of genetically diverse cells), with clonal multicellularity considered evolutionarily more stable (Grosberg and Strathmann, 1998 ). The molecular mechanisms by which organisms become multicellular are not well understood. In this article, we outline eukaryotic multicellular evolution, and discuss how to increase our future understanding. Evolution of unicellular–multicellular transitions: a genetic toolkit for multicellularity? The most well-studied group of multicellular organisms are animals, where multicellularity likely arose once, giving rise to today's diversity of complex forms. Organisms in animal sister lineages, the aquatic “protist” choanoflagellates and filastereans (forming holozoans collectively with animals), can be unicellular or multicellular. Comparison of unicellular holozoan and animal genomes suggests that part of the “toolkit” of genes required to orchestrate multicellular development (genes for cell adhesion, cell–cell signaling and certain transcription factors) was already present in unicellular ancestors of both holozoans and animals (Abedin and King, 2008 ; King et al., 2008 ; Sebe-Pedros et al., 2011 ; Fairclough et al., 2013 ; Suga et al., 2013 ), although “metazoan-specific innovations” also exist (Suga et al., 2013 ). Data from algae extends this “common toolkit” hypothesis to other kingdoms. The Chlamydomonas (unicellular) and Volvox (simple multicellular) genomes are remarkably similar (Merchant et al., 2007 ; Prochnik et al., 2010 ), with very few species-specific genes, and expansion of Volvox extracellular matrix (ECM) gene families (Prochnik et al., 2010 ). Much is now understood about the evolutionary steps to multicellularity in Volvocine algae (Herron et al., 2009 ), but the underlying molecular–genetic mechanisms are unknown. The genome sequence of Ectocarpus , a multicellular brown alga, reveals no obvious trends of specific gene loss/gain in independent multicellular lineages (Cock et al., 2010 ). Ectocarpus contains possible integrin domains, which are important for animal development and also present in unicellular Holozoa (Cock et al., 2010 ). Ectocarpus also highlights the independent evolution of large receptor-kinase protein families as a step to drive complex multicellular evolution from a eukaryotic ancestor (Cock et al., 2010 ), as also suggested in plants (Shiu and Bleecker, 2001 ) and holozoans (Hunter and Plowman, 1997 ; Suga et al., 2014 ). Multicellular fungi possess unique non-receptor kinases (Stajich et al., 2010 ). Thus, transitions to multicellularity most likely largely require co-option of pre-existing genes, via changes in expression or regulation. Understanding unicellular–multicellular life-cycle transition mechanisms All multicellular organisms possess a unicellular life-cycle stage, undergoing a unicellular–multicellular transition in every generation. In the most complex organisms (animals and terrestrial plants), these transitions are challenging to characterize experimentally, as the unicells (gametes, zygotes) are hidden deep within host tissues (e.g., Figure 1B ). However, there are eukaryotes of varying complexity that offer tractable systems to define molecular changes underpinning unicellular–multicellular transitions, enabling new opportunities for characterization and comparison. Figure 1 Transitions between unicellular and multicellular states in plants, algae, and their relatives. (A) Simplified tree of life showing the Unikont and plant/algal lineages and their evolutionary relationships, including divergence times in millions or billions of years ago (mya or bya, respectively). Animals, choanoflagellates, filastereans, and ichthyosporeans are collectively known as holozoans (purple boxes). Plants and green algae (green boxes) together with red algae (red box) form the Archaeplastida, while brown algae are part of a separate lineage evolving from a common eukaryotic ancestor 1.6 billion years ago. (B) Highly simplified flowering plant life cycle showing unicellular–multicellular transitions (orange arrow) and multicellular–unicellular transitions (blue arrows). The multicellular seed (orange) houses the unicellular diploid zygote (
机译:引言活生物体是单细胞的,由单细胞或多细胞组成,其中多达约10〜(12)个细胞协同工作(Kaiser,2001)。所有的多细胞生物都起源于单细胞祖先。每个单独的生物都来自单细胞,并通过形成单细胞进行繁殖。多细胞性可以带来竞争优势,并可能塑造了我们的富氧气氛(Grosberg和Strathmann,1998; Kaiser,2001; Schirrmeister等人,2013)。多细胞性已经进化了许多次:动物,植物,藻类,变形虫,真菌和细菌都是或可以都是多细胞的(King,2004; Grosberg和Strathmann,2007; Rokas,2008; Claessen等,2014)。多细胞性可以是克隆的(由单个细胞分裂引起)或聚集的(遗传上不同细胞的聚集),而克隆的多细胞性在进化上被认为更稳定(Grosberg和Strathmann,1998)。有机体变为多细胞的分子机制尚不清楚。在本文中,我们概述了真核生物多细胞进化,并讨论了如何增加我们的未来理解。单细胞-多细胞转变的进化:多细胞性的遗传工具?研究最深入的多细胞生物群是动物,其中多细胞性可能会出现一次,从而导致当今复杂形式的多样性。动物姐妹血统中的生物,水生“原生生物”的鞭毛虫和丝虫(与动物共同形成整体动物)可以是单细胞或多细胞的。单细胞全人类和动物基因组的比较表明,协调多细胞发育所需的部分基因“工具包”(细胞粘附,细胞间信号传导和某些转录因子的基因)已经存在于全人类和动物的单细胞祖先中(阿比丁)和King,2008; King等,2008; Sebe-Pedros等,2011; Fairclough等,2013; Suga等,2013),尽管也存在“ metazoan特定的创新”(Suga等。 ,2013年)。来自藻类的数据将这一“通用工具箱”假设扩展到了其他王国。衣藻(单细胞)和沃尔沃克斯(简单多细胞)基因组非常相似(Merchant等,2007; Prochnik等,2010),物种特异性基因很少,并且沃尔沃克斯细胞外基质(ECM)基因家族扩展(Prochnik et al。,2010)。现在,人们对Volvocine藻类向多细胞性进化的步骤了解很多(Herron等,2009),但是潜在的分子遗传机制尚不清楚。 Ectocarpus(一种多细胞棕色藻类)的基因组序列在独立的多细胞谱系中没有发现特异性基因丢失/获得的明显趋势(Cock等,2010)。腕果含有可能的整联蛋白结构域,这对动物的发育很重要,并且也存在于单细胞的Holozoa中(Cock等,2010)。赤藓还强调了大的受体激酶蛋白家族的独立进化,这是从真核祖先驱动复杂的多细胞进化的步骤(Cock等,2010),这在植物(Shiu和Bleecker,2001)和全人类(Hunter)中也被提出和Plowman,1997; Suga等,2014)。多细胞真菌具有独特的非受体激酶(Stajich等,2010)。因此,通过表达或调控的改变,向多细胞性的转化极有可能需要共存已有基因。了解单细胞-多细胞生命周期的转变机制所有多细胞生物都具有单细胞生命周期的阶段,每一代都经历着单细胞-多细胞的转变。在最复杂的生物体(动物和陆生植物)中,由于单细胞(配子,合子)隐藏在宿主组织的深处(例如图1B),因此这些过渡很难通过实验表征。但是,存在着复杂程度各异的真核生物,这些真核生物提供了易于处理的系统来定义支持单细胞-多细胞过渡的分子变化,从而为表征和比较提供了新的机会。图1:植物,藻类及其近亲中单细胞和多细胞状态之间的转换。 (A)简化的生命树,显示Unikont和植物/藻类谱系及其进化关系,包括数百万或数十亿年前(分别为mya或bya)的发散时间。动物,鞭毛虫,丝线虫和鱼卵孢子统称为整形动物(紫色盒子)。植物和绿藻(绿箱)与红藻(红箱)一起构成了古生菌,而棕藻则是16亿年前共同的真核祖先演变而来的一个独立世系的一部分。 (B)高度简化的开花植物生命周期,显示单细胞–多细胞过渡(橙色箭头)和多细胞–单细胞过渡(蓝色箭头)。多细胞种子(橙色)包含单细胞二倍体合子(

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号