...
首页> 外文期刊>Frontiers in Neural Circuits >Commentary: Robust quantification of orientation selectivity and direction selectivity
【24h】

Commentary: Robust quantification of orientation selectivity and direction selectivity

机译:评论:方向选择性和方向选择性的可靠量化

获取原文
           

摘要

Mazurek et al. ( 2014 ) provided an important step forward in changing the old-fashioned manner of reporting orientation and/or direction selectivity of cells that involved the infamous OI–orientation index, DI, and related quantities such as orientation bias and direction bias (OB/DB, see Leventhal et al., 2003 ; OB/DB are the normalized or./dir. vector lengths, defined as L _( ori )and L _( dir )on p. 4 in Mazurek et al., 2014 ). At the beginning of their Results section, they demonstrated the unwanted features of these indexes, and showed that even non tuned cells can exhibit strong values of OI/DI. Therefore, they emphasized that little information was provided by these indexes (which I heartily welcome since it means I no longer have to discuss them with researchers and students) and investigated a statistical method of testing whether a cell is orientation- or direction-tuned. In this commentary, first I would put forward what should be the first basic report in physiological studies: tuning characteristics. Second, I extend Mazurek et al.'s analysis and compare their proposed test to the fitting approach, which they only advocated for extracting tuning parameters. I conclude by mentioning the issue of tuning decision based on p -value and related questions. First, OBs and associates cannot be the first analyses and reports since they are based on the tuning properties (see Figure 1 of Mazurek et al., 2014 ; and in my commentary, Figure 1A ). Even when a cell is clearly tuned, these indexes have the highly unwanted feature of depending on at least two of the tuning characteristics: background rate, tuning width, and amplitude(s) (mentioned by the authors, pp. 9–10). Consequently, one compares data sets using unknowingly biased values, without clear interpretation of what changed in the tuning properties (see Figure 1B ). As such, it is regrettable that the authors continue reporting results and statistical reliability with respect to OI/DI, when they should first have analyzed the tuning characteristics of the cells and how the decision criteria regarding the presence of tuning (e.g., their T ~(2)-test) depend on those parameters. Once the tuned cells are gathered and their parameters analyzed with respect to the hypotheses tested, then one may consider whether a composite index is appropriate for reporting the effects that are observed (e.g., SNR, OI, etc.). Figure 1 Illustration of tuning, index variations, and statistical decision about tuning presence . (A) Examples of two theoretical orientation-tuned cells only differing in background firing rate (r_(0)of 10 and 30 Hz; Gaussian curves with amplitudes of 40 Hz and σ of 25°) and their associated OI/OB (A, amplitude; hwhm, half-width at half-maximum). (B) Illustration of the variation of the orientation bias index (Leventhal et al., 1995 ) for Gaussian orientation-tuned cells when only one of the three parameters varies, with the two other fixed (see legend), demonstrating the difficulty of interpreting OI/OB variables without knowledge of the tuning parameters. (C) Proportion of detected tuned cells of a given amplitude (abscissa) when applying the Hotelling T ~(2)-test (red curves) or F -test (black curves), and for two different background firing rates (5 Hz in solid lines, 30 Hz in dashed lines). The model response was a von Mises direction-tuned cell (parameters: r_(0), a_(1)= 50 Hz, a_(2)= 0 Hz, k = 0.95, giving hwhm~32.6°; see Swindale, 1998 ), experimental sampling was every 15° (e.g., Schmolesky et al., 2000 ) with 10 repetitions per direction, and random noise around the mean was simulated as Poisson type. A total of 200 cells were simulated for each amplitude (each symbol in the plot) with random jitter of the preferred orientation across simulations within a 40° window. Each simulation was fitted with the von Mises two amplitude function (here unconstrained), and the statistical tests applied at α = 0.05/100 for multiple tests adjustment (Matlab code available on demand, or on http://www.researchgate.net/profile/Tzvetomir_Tzvetanov ). Second, the authors describe a method of testing whether a cell is tuned to orientation/motion direction (p.7). They propose creating sub-samples of single trial per orientation/direction from the measures, then computing the orientation/direction vector for each sub-sample and performing a Hotelling's T ~(2)-test to check whether the neuron's responses represent tuning against the hypothesis of uniform circular tuning. Later in their text (p. 11), they use fitting (Swindale, 1998 ), on those cells that were previously found to be tuned with the T ~(2)-test, to extract the tuning characteristics. Nevertheless, any model-based fitting approach allows one to test if a cell is tuned (H0, mean uniform response; and H1, the model describes the cell responses better than the mean) by using any relevant test statistics, for example an F -test between two nested models [ F = (SS1 ? SS2)/(df1 ? df2)/(SS2/df2)]. Fi
机译:Mazurek等。 (2014年)在改变老式的报告细胞方向和/或方向选择性的方式方面迈出了重要的一步,该方式涉及臭名昭著的OI-方向指数,DI和相关量(例如方向偏差和方向偏差,OB / DB) ,参见Leventhal等人,2003; OB / DB是归一化的或方向/目录向量长度,在Mazurek等人,2014年的第4页上定义为L _(ori)和L _(dir)。在“结果”部分的开始,他们展示了这些索引的有害功能,并表明,即使未经调整的单元格也可以显示出强大的OI / DI值。因此,他们强调这些索引提供的信息很少(我非常欢迎它,因为这意味着我不再需要与研究人员和学生讨论它们),并研究了一种统计方法来测试细胞是否经过方向调整或方向调整。在这篇评论中,首先,我将提出生理学研究的第一个基本报告:调节特性。其次,我扩展了Mazurek等人的分析,并将他们提出的测试与拟合方法进行了比较,他们只提倡拟合方法用于提取调整参数。最后,我提到了基于p值和相关问题进行调整决策的问题。首先,OB和联系者不能成为第一个分析和报告,因为它们基于调整属性(请参见Mazurek等人,2014年的图1;在我的评论中,图1A)。即使对一个单元进行了清晰的调谐,这些索引也具有非常有害的特性,它至少取决于两个调谐特性:背景速率,调谐宽度和幅度(作者提到,第9-10页)。因此,人们使用不知不觉中的偏差值来比较数据集,而没有清楚地解释调节属性中发生了什么变化(参见图1B)。因此,令人遗憾的是,当作者首先应该分析细胞的调谐特性以及有关调谐是否存在的决策标准(例如,它们的T〜)时,他们继续报告有关OI / DI的结果和统计可靠性。 (2)-test)取决于那些参数。一旦收集了调谐的细胞并且针对测试的假设分析了它们的参数,则可以考虑复合指数是否适合报告所观察到的影响(例如,SNR,OI等)。图1调优,索引变化和关于调优存在的统计决策的图示。 (A)两个理论定向调谐单元的示例,它们的背景发射速率(r_(0)分别为10和30 Hz;振幅为40 Hz,σ为25°的高斯曲线)及其相关的OI / OB(A,幅度; hwhm,一半为最大值的一半宽度)。 (B)高斯定向调谐单元的定向偏差指数的变化(Leventhal等,1995)的图示,当三个参数中只有一个变化时,另两个参数是固定的(参见图例),这说明了解释的难度不了解调整参数的OI / OB变量。 (C)在应用霍特林T〜(2)-测试(红色曲线)或F-测试(黑色曲线)时,并且对于两种不同的本底发射速率(5 Hz时),检测到的给定幅度(横坐标)的调谐单元的比例(横坐标)实线,虚线为30 Hz)。模型响应为von Mises方向调谐单元(参数:r_(0),a_(1)= 50 Hz,a_(2)= 0 Hz,k = 0.95,给出hwhm〜32.6°;参见Swindale,1998) ,实验采样是每15°(例如Schmolesky et al。,2000),每个方向重复10次,均值周围的随机噪声被模拟为Poisson型。对于每个幅度(图中的每个符号),总共模拟了200个像元,并在40°窗口内的各个模拟中对首选方向进行了随机抖动。每个模拟都配备了von Mises的两个振幅函数(此处不受限制),并且统计测试以α= 0.05 / 100进行了多次测试调整(可按需提供Matlab代码,或访问http://www.researchgate.net/个人资料/ Tzvetomir_Tzvetanov)。其次,作者描述了一种测试细胞是否被调整到方向/运动方向的方法(第7页)。他们建议从测量中为每个方向/方向创建单个试验的子样本,然后为每个子样本计算方向/方向向量,并执行Hotelling的T〜(2)-检验以检查神经元的响应是否代表针对统一循环调谐的假设。在他们的文本的后面(第11页),他们对先前发现用T〜(2)测试进行调谐的那些单元使用拟合(Swindale,1998),以提取调谐特性。不过,任何基于模型的拟合方法都可以通过使用任何相关的测试统计数据(例如F-)来测试是否调整了单元(H0,均值均匀响应; H1,该模型比均值更好地描述了单元响应)。在两个嵌套模型之间进行测试[F =(SS1?SS2)/(df1?df2)/(SS2 / df2)]。 Fi

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号