...
首页> 外文期刊>Frontiers in Microbiology >Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize ( Zea mays L.)
【24h】

Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize ( Zea mays L.)

机译:盐胁迫玉米中 Staphylococcus sciuri SAT-17介导的抗氧化防御机制和生长调节

获取原文

摘要

Soil salinity severely affects plant nutrient use efficiency and is a worldwide constraint for sustainable crop production. Plant growth-promoting rhizobacteria, with inherent salinity tolerance, are able to enhance plant growth and productivity by inducing modulations in various metabolic pathways. In the present study, we reported the isolation and characterization of a salt-tolerant rhizobacterium from Kallar grass [ Leptochloa fusca (L.) Kunth]. Sequencing of the 16S rRNA gene revealed its lineage to Staphylococcus sciuri and it was named as SAT-17. The strain exhibited substantial potential of phosphate solubilization as well as indole-3-acetic acid production (up to 2 M NaCl) and 1-aminocyclopropane-1-carboxylic acid deaminase activity (up to 1.5 M NaCl). Inoculation of a rifampicin-resistant derivative of the SAT-17 with maize, in the absence of salt stress, induced a significant increase in plant biomass together with decreased reactive oxygen species and increased activity of cellular antioxidant enzymes. The derivative strain also significantly accumulated nutrients in roots and shoots, and enhanced chlorophyll and protein contents in comparison with non-inoculated plants. Similar positive effects were observed in the presence of salt stress, although the effect was more prominent at 75 mM in comparison to higher NaCl level (150 mM). The strain survived in the rhizosphere up to 30 days at an optimal population density (ca. 1 × 10~(6)CFU mL~(-1)). It was concluded that S. sciuri strain SAT-17 alleviated maize plants from salt-induced cellular oxidative damage and enhanced growth. Further field experiments should be conducted, considering SAT-17 as a potential bio-fertilizer, to draw parallels between PGPR inoculation, elemental mobility patterns, crop growth and productivity in salt-stressed semi-arid and arid regions.
机译:土壤盐分严重影响植物养分的利用效率,是可持续作物生产的全球性制约。具有固有盐度耐受性的促进植物生长的根际细菌能够通过诱导各种代谢途径的调节来增强植物的生长和生产力。在本研究中,我们报道了从Kallar草[Leptochloa fusca(L.)Kunth]分离并鉴定了一种耐盐根瘤菌。 16S rRNA基因的测序揭示了它对葡萄球菌的血统,并被命名为SAT-17。该菌株显示出显着的磷酸盐增溶潜力以及吲哚-3-乙酸的产生(最高2 M NaCl)和1-氨基环丙烷-1-羧酸脱氨酶活性(最高1.5 M NaCl)。在没有盐胁迫的情况下,用玉米接种SAT-17的耐利福平抗性衍生物会诱导植物生物量显着增加,同时活性氧种类减少,细胞抗氧化酶活性增加。与未接种的植物相比,衍生菌株还显着地在根和茎中积累了养分,并提高了叶绿素和蛋白质含量。在盐胁迫下也观察到了类似的积极效果,尽管与较高的NaCl水平(150 mM)相比,该效果在75 mM时更为突出。该菌株在根际中以最佳种群密度(约1×10〜(6)CFU mL〜(-1))存活长达30天。结论是,S。sciuri菌株SAT-17减轻了玉米植物的盐诱导的细胞氧化损伤并增强了生长。在考虑到SAT-17作为潜在生物肥料的情况下,应进行进一步的田间试验,以在盐分半干旱和干旱地区的PGPR接种,元素迁移模式,作物生长和生产力之间得出相似之处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号