首页> 外文期刊>Frontiers in Microbiology >Redefining bacterial origins of replication as centralized information processors
【24h】

Redefining bacterial origins of replication as centralized information processors

机译:重新定义细菌复制起点作为集中信息处理器

获取原文
           

摘要

In this review we stress the differences between eukaryotes and bacteria with respect to their different cell cycles, replication mechanisms and genome organizations. One of the most basic and underappreciated differences is that a bacterial chromosome uses only one ori while eukaryotic chromosome uses multiple oris . Consequently, eukaryotic ori s work redundantly in a cell cycle divided into separate phases: First inactive replication proteins assemble on eukaryotic ori s, and then they await conditions (in the separate “S-phase”) that activate only the ori -bound and pre-assembled replication proteins. S-phase activation (without re-assembly) ensures that a eukaryotic ori “fires” (starts replication) only once and that each chromosome consistently duplicates only once per cell cycle. This precise chromosome duplication does not require precise multiple ori firing in S-phase. A eukaryotic ori can fire early, late or not at all. The single bacterial ori has no such margin for error and a comparable imprecision is lethal. Single ori usage is not more primitive; it is a totally different strategy that distinguishes bacteria. We further argue that strong evolutionary pressures created more sophisticated single ori systems because bacteria experience extreme and rapidly changing conditions. A bacterial ori must rapidly receive and process much information in “real-time” and not just in “cell cycle time.” This redefinition of bacterial oris as centralized information processors makes at least two important predictions: First that bacterial oris use many and yet to be discovered control mechanisms and second that evolutionarily distinct bacteria will use many very distinct control mechanisms. We review recent literature that supports both predictions. We will highlight three key examples and describe how negative-feedback, phospho-relay, and chromosome-partitioning systems act to regulate chromosome replication. We also suggest future studies and discuss using replication proteins as novel antibiotic targets.
机译:在这篇综述中,我们强调了真核生物和细菌在细胞周期,复制机制和基因组组织方面的差异。最基本和未被充分理解的差异之一是细菌染色体仅使用一个ori,而真核染色体使用多个oris。因此,真核ori在一个分为不同阶段的细胞周期中是多余的:首先,非活性复制蛋白组装在真核ori上,然后等待条件(在单独的“ S阶段”),该条件仅激活ori结合的前期组装的复制蛋白。 S期激活(无需重新组装)可确保真核ori仅触发一次(开始复制),并且每个染色体在每个细胞周期仅重复复制一次。这种精确的染色体复制不需要在S期进行精确的多次定向放电。真核ori可以提前,延迟或根本不触发。单个细菌ori没有这样的误差范围,相当的不精确性是致命的。单个ori用法不是更原始的;这是区分细菌的完全不同的策略。我们进一步论证说,强大的进化压力创建了更复杂的单一ori系统,因为细菌会经历极端和快速变化的条件。细菌ori必须快速地“实时”接收并处理许多信息,而不仅仅是“细胞周期时间”。将细菌原矿重新定义为集中信息处理程序至少可以做出两个重要的预测:首先,细菌原矿使用许多尚未发现的控制机制,其次,进化上不同的细菌将使用许多非常不同的控制机制。我们回顾了支持这两种预测的最新文献。我们将重点介绍三个关键示例,并描述负反馈,磷酸中继和染色体分区系统如何调控染色体复制。我们还建议未来的研究,并讨论使用复制蛋白作为新型抗生素靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号