...
首页> 外文期刊>Frontiers in Microbiology >Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano
【24h】

Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano

机译:陆地铁质,硫酸盐耗尽的泥火山中的微生物群落组成和功能能力

获取原文
           

摘要

Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs.
机译:陆地泥火山是甲烷排放的重要天然来源。在这种环境下,微生物过程在甲烷循环和有机转化中的作用尚待进一步研究。在这项研究中,我们旨在揭示台湾东部的一种含铁,硫酸盐耗尽的MV中地球化学转变过程中的功能潜力和群落组合。地球化学图谱与16S rRNA基因丰度相结合表明,由ANME-2a组介导的甲烷厌氧氧化(AOM)与去硫硫酸门菊酯在缺乏硫酸盐的浅深度还原铁/锰相吻合。单独的甲烷或甲烷和一系列电子受体(例如硫酸盐,亚铁水合物和人造腐殖酸)均可刺激AOM的活性。荟萃基因组分析表明,AOM和金属还原的功能基因在浅层间隔中更为丰富。特别是,编码菌毛表达和通过多血红素细胞色素进行电子转运的基因很普遍,这提示了参与AOM的电子转运的潜在细胞间相互作用。为了比较,负责甲壳质和植物来源的分子的甲烷生成和降解的基因在深度上更丰富。基因分布以及与产甲烷菌和异养菌有关的16S rRNA基因比例的增加,以及地球化学特征表明,颗粒状有机物被降解成各种有机物,可进一步促进原位甲烷化。最后,起泡池和近地表沉积物中负责好氧甲烷氧化的基因更加丰富。这些甲烷氧化剂导致甲烷排放到大气中的最终衰减。总体而言,我们的结果表明,各个社区成员沿着地球化学梯度被划分为分层的生态位。这些社区成员形成一个代谢网络,该网络将碳转化从难降解有机碳的上游降解与不稳定有机实体和甲烷的发酵生产到地表附近的下游甲烷氧化和金属还原串联起来。这种代谢结构能够在陆上MV的含铁硫酸盐贫化条件下有效去除甲烷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号