首页> 外文期刊>Frontiers in Microbiology >Editorial: Systems Biology and Ecology of Microbial Mat Communities
【24h】

Editorial: Systems Biology and Ecology of Microbial Mat Communities

机译:社论:微生物垫群落的系统生物学和生态学

获取原文
           

摘要

The goals of systems biology and microbial ecology are to gain a predictive understanding of how microbial communities function in dynamic systems, inclusive of interactions among community members and spatiotemporal changes in the physicochemical environment. Microorganisms in natural systems experience cycles of environmental change over different periodicities and amplitudes, and these processes are reflected in the composition, genetic repertoire and activity of microbial community members, and community function as a whole. A primary emphasis of this research topic was to focus on reports of tractable microbial communities in extreme environments (e.g., temperature, salinity, light, pH) where a foundation of genome sequence and other molecular (-omic) and geochemical measurements provide evidence of specific functional attributes of individual community members, which are directly linked with spatiotemporal changes in key environmental variables as well as the metabolic dynamics of other community members. Thermal or saline microbial mats are often stratified with respect to key environmental variables (e.g., light, oxygen) and exhibit compositional simplicity and low heterogeneity relative to habitats such as soils and/or natural waters. Consequently, the majority of contributions to this research topic focus on either high-temperature chemotrophic microbial mats, high-temperature phototrophic mats, or hypersaline phototrophic mats in marine or epsomitic systems. The structure and function of high-temperature systems of Yellowstone National Park (YNP) was evaluated using metagenome sequence and geochemical observations across a wide range of environmental conditions, which provided a basis for understanding the distribution of thermophiles in YNP and led to the discovery of several new archaeal and bacterial lineages. Genome sequences of relevant ecotypes have provided a foundation for interrogating more detailed spatiotemporal aspects of thermophilic phototrophic communities, including microsensor analysis of their physical and chemical microenvironment, and provided a rationale for comparison to hypersaline phototrophic mats. The fixation of carbon dioxide as a primary carbon source and the production of key cofactors by autotrophs are important processes, which support diverse heterotrophs across widely different environmental circumstances. Specific metabolic linkages among community members (e.g., production of storage compounds, nitrogen fixation, fermentation, sulfate reduction, hydrogen, and vitamin production) were documented in phototrophic mats, which revealed that these processes changed in unexpected ways across a diel cycle. The tight metabolic coupling among specific populations that are highly adapted to spatial and/or temporal conditions is a common theme in natural environments, and this was demonstrated in detail using different light-adapted ecotypes of cyanobacteria ( Synechococcus spp.) present in alkaline siliceous geothermal mats as primary producers. Finally, controlled experiments using pure cultures and/or consortia as “systems” revealed the importance of specific nutrient requirements, and importantly, how the exoproteome of a bacterium is controlled by the level of cellular oxidation. Ultimately, a predictive understanding of the complex network of abiotic and biotic interactions that occur in natural systems will also require detailed knowledge of the regulatory and physicochemical processes that govern gene expression, post-translational modifications, and protein activity. It is our hope that the articles included in this research topic advance a more comprehensive understanding of natural microbial communities, and demonstrate the utility of coupling molecular methods with detailed spatiotemporal measurements and dissection of microbial community function across gradients in key environmental variables such as light, temperature, pH, oxygen, or hydrogen. Integrated approaches across relevant microbial scales will lead to predictive capabilities useful for engineering microbial communities (or consortia) and for understanding how natural systems may respond to changes in key environmental variables (e.g., climate change). Author contributions WI drafted the manuscript, DB, JF, MK, and MGK revised the draft and all authors agreed to the final version. The articles in the RT were edited by MGK (10), WI (3), MK (1), and DB (1). Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
机译:系统生物学和微生物生态学的目标是获得对微生物群落如何在动态系统中起作用的预测性理解,包括群落成员之间的相互作用和物理化学环境中的时空变化。自然系统中的微生物会经历不同周期和振幅的环境变化循环,这些过程反映在微生物群落成员的组成,遗传资源和活动以及整个群落功能上。该研究主题的主要重点是关注极端环境(例如温度,盐度,光照,pH)中易处理微生物群落的报道,在该环境中基因组序列的基础以及其他分子(组学)和地球化学测量可提供特定证据。各个社区成员的功能属性,这些属性与关键环境变量的时空变化以及其他社区成员的代谢动力学直接相关。相对于关键环境变量(例如光,氧)而言,热或盐水微生物垫通常是分层的,并且相对于诸如土壤和/或天然水之类的栖息地,其表现出组成简单性和低异质性。因此,对该研究主题的大部分贡献集中于海洋或泻吐系统中的高温化学营养微生物垫,高温光营养垫或高盐光营养垫。黄石国家公园(YNP)高温系统的结构和功能通过使用元基因组序列和在广泛的环境条件下的地球化学观测进行了评估,为了解YNP中嗜热菌的分布提供了基础,并导致发现几个新的古细菌和细菌谱系。相关生态型的基因组序列为询问嗜热光养群落的更详细的时空方面提供了基础,包括对其物理和化学微环境的微传感器分析,并为与高盐光养垫进行比较提供了理论依据。将二氧化碳固定为主要碳源和通过自养生物产生关键辅因子是重要的过程,它们支持在广泛不同的环境条件下形成不同的异养生物。在光养垫上记录了社区成员之间特定的代谢联系(例如,存储化合物的产生,固氮,发酵,硫酸盐还原,氢和维生素的产生),这表明这些过程在整个diel循环中以意想不到的方式发生了变化。在自然环境中,特定种群之间高度适应空间和/或时间条件的紧密代谢耦合是一个普遍的主题,这通过使用碱性硅质地热中存在的不同光适应性生态型蓝细菌(Synechococcus spp。)进行了详细证明。垫作为主要生产者。最后,使用纯培养物和/或联合体作为“系统”的对照实验揭示了特定养分需求的重要性,并且重要的是,细菌的外蛋白质组是如何通过细胞氧化水平控制的。最终,对自然系统中发生的非生物和生物相互作用的复杂网络的预测性理解还需要对控制基因表达,翻译后修饰和蛋白质活性的调节和物理化学过程的详细了解。我们希望本研究主题中的文章能对自然微生物群落有更全面的了解,并证明结合分子方法与详细的时空测量以及解剖关键环境变量(例如光,温度,pH,氧气或氢气。跨相关微生物规模的综合方法将产生对工程微生物群落(或财团)有用的预测能力,并有助于理解自然系统如何对关键环境变量(例如气候变化)做出反应。 WI起草了作者文稿,DB,JF,MK和MGK修改了草案,所有作者均同意最终版本。 RT中的文章由MGK(10),WI(3),MK(1)和DB(1)编辑。利益冲突声明作者声明,这项研究是在没有任何商业或金融关系的情况下进行的,可以将其解释为潜在的利益冲突。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号