首页> 外文期刊>Frontiers in Microbiology >Corrigendum: Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production
【24h】

Corrigendum: Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

机译:更正:基于基因组的遗传工具,用于甲醇芽孢杆菌:可诱导基因表达的θ和滚动环复制质粒及其在甲醇基尸胺生产中的应用

获取原文
           

摘要

In the original article, there was a mistake in Table 2 as published. The cadaverine concentrations reported were miscalculated and overestimated by 41.6%, because the HPLC standard solution consisted of “cadaverine dihydrochloride (175.1 g/mol)” and not “cadaverine (102.18 g/mol).” The corrected Table 2 appears below. Table 2 Fed-batch methanol fermentation production data of strains MGA3(pBV2mp- cadA ) and MGA3 (pTH1mp- cadA ). Strain CDW ~(a) μ ~(b) Asp ~(c) Glu ~(c) Ala ~(c) Lys ~(c) Cad ~(c) g/L h ~(?1) g/L g/L g/L g/L g/L MGA3(pBV2mp- cadA ) 60.9 0.38 1.6 72.2 9.2 0.5 10.2 MGA3(pTH1mp- cadA ) 65.5 0.45 1.5 71.8 10.2 0.0 6.5 Mean values of duplicate cultures for B. methanolicus MGA3(pBV2mp-cadA) are shown. Deviation did not exceed 10%.The MGA3(pTH1mp-cadA) data was imported from N?rdal et al. ( 2015 ). CDW, cell dry weight; μ, specific growth rate; Asp, l-aspartate; Glu, l-glutamate; Ala, l-alanine; Lys, l-lysine; Cad, cadaverine . a Biomass concentrations are maximum values from the stationary growth phase . b Specific growth rates are maximum values calculated from the exponential growth period . c Cadaverine and amino acid concentrations are maximum values and volume corrected . Because of the error reported above, a correction has been made to the Abstract : “ Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the ?35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.” Additionally, a correction has been made to the Results, Cadaverine Production From Methanol by Expression of a Heterologous Lysine Decarboxylase Gene From a Theta-Replicating Plasmid: “The plasmids pTH1mp and pBV2mp, containing the mdh promoter were used to study cadaverine production in B. methanolicus during fed-batch methanol fermentation. We have previously reported a methanol-based cadaverine production titer of 6.5 g/L by B. methanolicus MGA3 (pTH1mp- cadA ), a strain overexpressing the lysine decarboxylase cadA gene from E. coli (corrigendum to N?rdal et al., 2015 ). We compared cadaverine production in the strain overexpressing cadA from a theta-replicating plasmid during high cell density fed-batch fermentation. The B. methanolicus strain MGA3 (pBV2mp- cadA ) was tested in duplicates under comparable fermentation conditions. Samples for cadaverine and amino acid analysis, cell dry weight and OD _(600) were taken throughout the cultivation. As presented in Table 2 , we obtained a cadaverine production titer of 10.2 g/L based on the alternative theta-replicating pBV2mp plasmid. A substantial 55% production increase compared to the previously reported (pTH1mp- cadA )-based strain was observed. While biomass and by-product levels were similar between the two strains, the specific growth rate of MGA3 (pBV2mp- cadA ) was lower than that of MGA3 (pTH1mp- cadA ) ( Table 2 ).” Lastly, in the original article, the reference for “(N?rdal et al., 2015 )” was incorrectly written as “N?rdal, I., Pfeifenschneider, J., Brautaset, T., and Wendisch, V. F. (2015). Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb. Biotechnol . 8, 342–350. doi: 10.1111/1751-7915.12257”. It should be “N?rdal, I., Pfeifenschneider, J., Brautaset, T., and Wendisch, V. F. (2015). Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb. Biotechnol . 8, 342–350. doi: 10.1111/1751-7915.12257. Microb. Biotechnol . 2019, 12, 182-183”. The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
机译:在原始文章中,表2中存在一个错误。报告的尸胺浓度计算错误,被高估了41.6%,因为HPLC标准溶液由“盐酸尸胺(175.1 g / mol)”而不是“尸胺(102.18 g / mol)”组成。校正后的表2出现在下面。表2菌株MGA3(pBV2mp-cadA)和MGA3(pTH1mp-cadA)的分批补料甲醇发酵生产数据。菌株CDW〜(a)μ〜(b)Asp〜(c)Glu〜(c)Ala〜(c)Lys〜(c)Cad〜(c)g / L h〜(?1)g / L g / L g / L g / L g / L MGA3(pBV2mp-cadA)60.9 0.38 1.6 72.2 9.2 0.5 10.2 MGA3(pTH1mp-cadA)65.5 0.45 1.5 71.8 10.2 0.0 6.5甲醇双歧杆菌MGA3(pBV2mp-cadA)重复培养的平均值)。偏差不超过10%。MGA3(pTH1mp-cadA)数据从N?rdal等人导入。 (2015)。 CDW,细胞干重; μ,比增长率;天冬氨酸,天冬氨酸;谷氨酸,谷氨酸;丙氨酸,丙氨酸;赖氨酸,赖氨酸;镉,尸胺。 a生物质浓度是静止生长期的最大值。 b比增长率是从指数增长期计算出的最大值。 c尸胺和氨基酸浓度为最大值,且体积校正。由于上面报告的错误,已经对摘要进行了更正:“甲醇芽孢杆菌是一种嗜热甲基营养菌,能够从甲醇(一种不用于人类或动物营养的底物)中过量生产氨基酸。基于我们以前的RNA序列分析,确定了甘露醇诱导型启动子和推定的甘露醇激活基因mtlR。将甘露醇诱导型启动子用于使用荧光报告蛋白和流式细胞仪分析的受控基因表达,并通过改变β35启动子区域和共同表达mtlR调节子基因来改善。对于独立的互补基因表达控制,采用了来自巨大芽孢杆菌的异源木糖诱导系统,并开发了两质粒基因表达系统。比较了表达载体的四个不同复制子的拷贝数和稳定性。作为一个应用实例,当从theta复制载体而不是滚环复制载体表达异源赖氨酸脱羧酶基因cadA时,尸胺的甲醇基生产量从6.5提高到10.2 g / L。目前有关诱导型启动子系统和兼容的θ或滚动环复制载体的研究是对甲醇芽孢杆菌遗传工具箱开发欠佳的重要扩展,对于基因工程和对该细菌的进一步研究非常有价值。”此外,对结果进行了校正,即通过从Theta复制质粒表达异源赖氨酸脱羧酶基因,从甲醇中生产尸胺,其中包括:mTH启动子的质粒pTH1mp和pBV2mp用于研究B中的尸胺生产。分批补料甲醇发酵过程中的甲醇。我们之前曾报道过,甲醇双歧杆菌MGA3(pTH1mp-cadA)会产生6.5 g / L的基于甲醇的尸胺生产滴度,该菌株过表达大肠杆菌的赖氨酸脱羧酶cadA基因(对N?rdal等人的勘误,2015年)。 )。我们比较了高细胞密度补料分批发酵过程中从theta复制质粒过表达cadA的菌株中尸胺的生产。甲醇双歧杆菌菌株MGA3(pBV2mp-cadA)在相当的发酵条件下一式两份进行测试。在整个培养过程中,采集尸胺和氨基酸分析样品,细胞干重和OD _(600)。如表2所示,基于替代的theta复制pBV2mp质粒,我们获得的尸胺滴度为10.2 g / L。与以前报道的(pTH1mp-cadA)基菌株相比,观察到产量大幅提高了55%。尽管两个菌株的生物量和副产物水平相似,但MGA3的比生长速率(pBV2mp-cadA)低于MGA3的比生长速率(pTH1mp-cadA)(表2)。最后,在原始文章中,“(N?rdal et al。,2015)”的引用被错误地写为“ N?rdal,I.,Pfeifenschneider,J.,Brautaset,T.和Wendisch,VF(2015 )。转基因甲醇芽孢杆菌菌株生产基于甲醇的尸胺。微生物。生物技术。 8,342–350。 doi:10.1111 / 1751-7915.12257”。应为“ N?rdal,I.,Pfeifenschneider,J.,Brautaset,T.和Wendisch,V. F.(2015)。转基因甲醇芽孢杆菌菌株生产基于甲醇的尸胺。微生物。生物技术。 8,342–350。 doi:10.1111 / 1751-7915.12257。微生物。生物技术。 2019,12,182-183”。作者对这些错误深表歉意,并指出这丝毫不改变本文的科学结论。原始文章已更新。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号