首页> 外文期刊>Frontiers in Computational Neuroscience >Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality
【24h】

Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

机译:具有非正弦形态的神经元振荡会产生杂散的相位-振幅耦合和方向性

获取原文
       

摘要

Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (>40 Hz) occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC). However, the CFC patterns might be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 or 1.5 mg of lorazepam (LZP; GABAergic enhancer) in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM), we were able to demonstrate that posterior alpha (8–12 Hz) phase was coupled to beta-low gamma band (20–45 Hz) amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh) values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD). Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs. Furthermore, we showed that periodic signals whose waveform deviate from pure sine waves produce non-zero CFCoh with predictable CFD. Our results reveal the important role of the non-sinusoidal wave morphology on state of the art CFC metrics and we recommend caution with strong physiological interpretations of CFC and suggest basic data quality checks to enhance the mechanistic understanding of CFC.
机译:神经元振荡支持认知过程。现代观点认为,神经元振荡不仅反映空间分布网络中的协调活动,而且在不同频率的振荡之间也存在相互作用。例如,在动物和人类中的侵入性记录发现,在较慢振荡的相位内,快速振荡的振幅(> 40 Hz)不均匀地发生,从而形成了所谓的跨频耦合(CFC)。但是,CFC模式可能受信号中与基础生理相互作用无关的特征的影响。例如,由于α频带波形态的非正弦特性,CFC估计可能对频谱相关性敏感。为了调查此问题,我们使用实验和综合数据进行了CFC分析。前者包括一项双盲磁头脑电图药理研究,参与者在不同的实验阶段接受安慰剂,0.5或1.5毫克劳拉西m(LZP; GABA能增强剂)。通过记录大脑在休息和工作记忆(WM)期间的振荡活动,我们能够证明在所有疗程中,后α(8–12 Hz)相位都耦合到β-低伽玛带(20–45 Hz)振幅包络。重要的是,α频率谐波周围的双相干值在幅度和形貌分布上都与在α相至β低γ耦合中观察到的跨频相干(CFCoh)值相似。此外,尽管CFCoh很大,但我们没有发现明显的跨频方向性(CFD)。至关重要的是,仿真表明,我们的经验CFCoh的相当大的一部分介于alpha和beta低伽马耦合之间,并且缺乏CFD可以通过零相位滞后对准的两个谐波来解释,这两个谐波是由生理特征α不对称产生的,振幅为0。相对于波谷的山峰。此外,我们表明,其波形偏离纯正弦波的周期性信号会产生具有可预测CFD的非零CFCoh。我们的结果揭示了非正弦波形态对最新的CFC指标的重要作用,我们建议谨慎使用CFC的生理学解释,并建议进行基本数据质量检查以增强对CFC的机械理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号