首页> 外文期刊>Frontiers in Chemistry >Heterostructured SnO2-SnS2@C Embedded in Nitrogen-doped Graphene as a Robust Anode Material for Lithium-ion Batteries
【24h】

Heterostructured SnO2-SnS2@C Embedded in Nitrogen-doped Graphene as a Robust Anode Material for Lithium-ion Batteries

机译:嵌入氮掺杂石墨烯中的异质结构SnO2-SnS2 @ C作为锂离子电池的坚固阳极材料

获取原文
           

摘要

Tin-based anode materials with high capacity attract wide attention of researchers and become a strong competitor for the next generation of lithium-ion battery anode materials. However, the poor electrical conductivity and severe volume expansion retard the commercialization of tin-based anode materials. Here, SnO2-SnS2@C nanoparticles with heterostructure embedded in a carbon matrix of nitrogen-doped graphene (SnO2-SnS2@C/NG) is ingeniously designed in this work. The composite was synthesized by a two-step method. Firstly, the SnO2@C/rGO with a nano-layer structure was synthesized by hydrothermal method as the precursor, and then the SnO2-SnS2@C/NG composite was obtained by further vulcanizing the above precursor. It should be noted that a carbon matrix with nitrogen-doped graphene can inhibit the volume expansion of SnO2-SnS2 nanoparticles and promote the transport of lithium ions during continuous cycling. Benefiting from the synergistic effect between nanoparticles and carbon matrix with nitrogen-doped graphene, the heterostructured SnO2-SnS2@C/NG further fundamentally confer improved structural stability and reaction kinetics for lithium storage. As expected, the SnO2-SnS2@C/NG composite exhibited high reversible capacity (1201.2 mA h g?1 at the current rate of 0.1 A g?1), superior rate capability and exceptional long-life stability (944.3 mAh g?1 after 950 cycles at the current rate of 1.0 A g?1). The results demonstrate that the SnO2-SnS2@C/NG composite is a highly competitive anode material for LIBs.
机译:高容量的锡基负极材料引起了研究人员的广泛关注,并成为下一代锂离子电池负极材料的有力竞争者。然而,差的电导率和严重的体积膨胀阻碍了锡基负极材料的商业化。在这里,这项工作巧妙地设计了异质结构嵌入氮掺杂石墨烯碳基质中的SnO2-SnS2 @ C纳米颗粒(SnO2-SnS2 @ C / NG)。该复合物通过两步法合成。首先,通过水热法合成了具有纳米层结构的SnO2 @ C / rGO作为前驱体,然后通过进一步硫化上述前驱体获得了SnO2-SnS2 @ C / NG复合材料。应当指出,具有氮掺杂石墨烯的碳基体可以抑制SnO2-SnS2纳米颗粒的体积膨胀并在连续循环过程中促进锂离子的转运。受益于纳米颗粒和碳基与氮掺杂石墨烯之间的协同作用,异质结构的SnO2-SnS2 @ C / NG进一步从根本上提高了锂存储的结构稳定性和反应动力学。正如预期的那样,SnO2-SnS2 @ C / NG复合材料表现出高可逆容量(在0.1 A g?1的电流速率下为1201.2 mA hg?1),优异的速率容量和出色的长寿命稳定性(在经过测试后为944.3 mAh g?1)电流为1.0 A g?1时950次循环。结果表明,SnO2-SnS2 @ C / NG复合材料是LIB极具竞争力的阳极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号