首页> 外文期刊>Frontiers in Computational Neuroscience >The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics
【24h】

The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics

机译:定位的HKB模型:感觉运动空间耦合如何改变振荡性脑动力学

获取原文
           

摘要

Despite the increase of both dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose “brain” is modeled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain), finding different behavioral strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behavior and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input. To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy of mind.
机译:尽管认知科学中动态方法和体现方法/情景方法的增加,但与孤立系统相比,在封闭的感觉运动回路下的协调动力学如何引起质性上不同的神经振荡模式的研究仍很少。我们以Haken-Kelso-Bunz(HKB)模型为出发点,该模型是两个振荡成分之间动态协调的通用模型,已被证明对认知科学的广泛应用有用,并且其动力学特性已广为人知。为了探索在封闭的感觉运动条件下该模型的特性,我们介绍了所谓的位置HKB模型:一种执行梯度爬升任务并且其“大脑”由HKB方程建模的机器人模型。我们解决了定义代理人与环境耦合的微分方程,以增加代理人的敏感度(传感器增益)的值,从而找到不同的行为策略。将这些结果与两种不同的模型进行了比较:没有感官输入的去耦HKB和也经过去耦但接收到由本地代理商生成的结构化输入的被动耦合HKB。我们可以精确地量化和定性地描述在耦合条件下研究系统的性能时,其根本如何以无法仅从已分离的HKB模型推导的方式发生根本性的变化。我们还提出了神经动力学签名的概念,将其作为与特定行为相关的动态模式,并且我们展示了与仅接收完全相同的感觉输入的代理相比,只有处于状态的代理才能显示此签名。据我们所知,这是HKB方程在感觉运动回路中的第一个解析解,并且是空间耦合与解耦振荡控制器的定性和定量分析比较。最后,我们讨论了我们的模型对当代神经科学和心理哲学的局限性和可能的​​概括。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号