...
首页> 外文期刊>Frontiers in Digital Humanities >A Physical Model of Sill Expansion to Explain the Dynamics of Unrest at Calderas with Application to Campi Flegrei
【24h】

A Physical Model of Sill Expansion to Explain the Dynamics of Unrest at Calderas with Application to Campi Flegrei

机译:用于解释火山口动荡动力学的门槛膨胀物理模型及其在Campi Flegrei中的应用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Many calderas show remarkable unrests, which often do not culminate in eruptions (non-eruptive unrest). In this context the interpretation of the geophysical data collected by the monitoring networks is difficult. When the unrest is eruptive, a vent opening process occurs, which leads to an eruption. In volcanic calderas, vent locations typically are scattered over a large area and monogenic cones form. The resulting pattern is characterized by a wide dispersion of eruptive vents, therefore, the location of the future vent in calderas is not easily predictable. We propose an interpretation of the deformation associated to unrest and vent pattern commonly observed at volcanic calderas, based on a physical model that simulates the intrusion and the expansion of a sill. The model can explain both the uplift and the subsequent subsidence, through a single geological process. In particular, we simulate the vertical displacement that occurred at the central area of Campi Flegrei caldera during the last decades, and we obtain good agreement with the data of a leveling benchmark near the center of the caldera. Considering that the stress mainly controls the vent opening process, we try to gain insight on the vent opening in calderas through the study of the stress field produced by the intrusion of an expanding sill. We find that the tensile stress in the rock above the sill is concentrated in a ring-shaped area with radius depending on the physical properties of magma and rock, the feeding rate and the magma cooling rate. This stress field is consistent with widely dispersed eruptive vents and monogenic cone formation, which are often observed in the calderas. However, considering the mechanical properties of the elastic plate and the rheology of magma, we show that remarkable deformations may be associated with low values of stress in the rock at the top of the intrusion, thereby resulting in non-eruptive unrests. Moreover, we have found that, under the assumption of isothermal conditions, the stress values decrease over time during the intrusion process. This result may explain why the long-term unrests, in general, do not culminate in an eruption.
机译:许多火山口显示出明显的动荡,通常不会在爆发时达到高潮(非爆发性动荡)。在这种情况下,很难解释由监测网络收集的地球物理数据。当动乱爆发时,会发生通风口打开过程,从而导致喷发。在火山口中,喷口通常散布在大面积上,并形成单圆锥体。最终的特征是喷发口分布广泛,因此,未来喷口在破火山口中的位置很难预测。我们基于模拟门槛的侵入和扩展的物理模型,提出了与火山口处通常观察到的与不安定和通气模式相关的变形的解释。该模型可以通过单个地质过程解释隆升和随后的沉降。特别是,我们模拟了过去几十年来在Campi Flegrei破火山口中心区域发生的垂直位移,并且我们与破火山口中心附近的水准基准数据很好地吻合。考虑到应力主要控制着通风孔的打开过程,我们试图通过研究膨胀式窗台的侵入所产生的应力场来了解火山口的通风孔。我们发现,门槛上方岩石中的拉伸应力集中在一个环形区域,该区域的半径取决于岩浆和岩石的物理特性,进给速率和岩浆冷却速率。该应力场与在火山口中经常观察到的广泛分布的喷发孔和单基因锥体形成一致。但是,考虑到弹性板的机械性能和岩浆的流变性,我们表明,明显的变形可能与侵入岩顶部岩石中的低应力值有关,从而导致了非火山爆发的动荡。此外,我们发现,在等温条件下,应力值在入侵过程中会随着时间而降低。这个结果可以解释为什么长期的动荡总的来说不会导致爆发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号