首页> 外文期刊>Forests >Linking Terrestrial LiDAR Scanner and Conventional Forest Structure Measurements with Multi-Modal Satellite Data
【24h】

Linking Terrestrial LiDAR Scanner and Conventional Forest Structure Measurements with Multi-Modal Satellite Data

机译:将陆地LiDAR扫描仪和常规森林结构测量与多模态卫星数据相链接

获取原文
           

摘要

Obtaining information on vertical forest structure requires detailed data acquisition and analysis which is often performed at a plot level. With the growing availability of multi-modal satellite remote sensing (SRS) datasets, their usability towards forest structure estimation is increasing. We assessed the relationship of PlanetScope-, Sentinel-2-, and Landsat-7-derived vegetation indices (VIs), as well as ALOS-2 PALSAR-2- and Sentinel-1-derived backscatter intensities with a terrestrial laser scanner (TLS) and conventionally measured forest structure parameters acquired from 25 field plots in a tropical montane cloud forest in Kafa, Ethiopia. Results showed that canopy gap-related forest structure parameters had their highest correlation (|r| = 0.4 ? 0.48) with optical sensor-derived VIs, while vegetation volume-related parameters were mainly correlated with red-edge- and short-wave infrared band-derived VIs (i.e., inverted red-edge chlorophyll index (IRECI), normalized difference moisture index), and synthetic aperture radar (SAR) backscatters (|r| = ?0.57 ? 0.49). Using stepwise multi-linear regression with the Akaike information criterion as evaluation parameter, we found that the fusion of different SRS-derived variables can improve the estimation of field-measured structural parameters. The combination of Sentinel-2 VIs and SAR backscatters was dominant in most of the predictive models, while IRECI was found to be the most common predictor for field-measured variables. The statistically significant regression models were able to estimate cumulative plant area volume density with an R 2 of 0.58 and with the lowest relative root mean square error (RRMSE) value (0.23). Mean gap and number of gaps were also significantly estimated, but with higher RRMSE ( R 2 = 0.52, RRMSE = 1.4, R 2 = 0.68, and RRMSE = 0.58, respectively). The models showed poor performance in predicting tree density and number of tree species ( R 2 = 0.28, RRMSE = 0.41, and R 2 = 0.21, RRMSE = 0.39, respectively). This exploratory study demonstrated that SRS variables are sensitive to retrieve structural differences of tropical forests and have the potential to be used to upscale biodiversity relevant field-based forest structure estimates.
机译:获取有关垂直森林结构的信息需要详细的数据采集和分析,这通常是在地块级别上进行的。随着多模式卫星遥感(SRS)数据集的可用性不断提高,它们在森林结构估计中的可用性正在提高。我们使用地面激光扫描仪(TLS)评估了PlanetScope,Sentinel-2-和Landsat-7衍生的植被指数(VI)以及ALOS-2 PALSAR-2和Sentinel-1衍生的背向散射强度之间的关系。 )和常规测量的森林结构参数,这些参数是从埃塞俄比亚卡法的热带山地云雾森林的25个田地中获取的。结果表明,与冠层间隙相关的森林结构参数与源自光学传感器的VI具有最高的相关性(| r | = 0.4〜0.48),而与植被体积相关的参数主要与红边和短波红外波段相关派生的VI(即,倒红边叶绿素指数(IRECI),归一化差异水分指数)和合成孔径雷达(SAR)背向散射(| r | =?0.57?0.49)。使用以Akaike信息准则为评估参数的逐步多线性回归,我们发现不同SRS衍生变量的融合可以改善现场测量的结构参数的估计。在大多数预测模型中,Sentinel-2 VI和SAR反向散射的组合占主导地位,而IRECI被发现是现场测量变量的最常见预测因子。具有统计学意义的回归模型能够估计R 2为0.58且具有最低相对均方根误差(RRMSE)值(0.23)的累积植物面积体积密度。平均缺口和缺口数也得到了显着估计,但RRMSE较高(R 2 = 0.52,RRMSE = 1.4,R 2 = 0.68和RRMSE = 0.58)。这些模型在预测树木密度和树木数量方面表现不佳(分别为R 2 = 0.28,RRMSE = 0.41和R 2 = 0.21,RRMSE = 0.39)。这项探索性研究表明,SRS变量对恢复热带森林的结构差异很敏感,并且有潜力用于升级与生物多样性相关的基于实地的森林结构估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号